100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Interview

How to sketch a cubic function

Beoordeling
-
Verkocht
-
Pagina's
9
Geüpload op
24-11-2021
Geschreven in
2021/2022

This document includes ALL necessary information related to sketching a cubic functions; the necessary heading ,etc.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak
Schooljaar
200

Documentinformatie

Geüpload op
24 november 2021
Aantal pagina's
9
Geschreven in
2021/2022
Type
Interview
Bedrijf
Onbekend
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

Cubic function graph sketching

When we sketch any graph we find out what its distinguishing features are and by plotting these
distinguishing features we are able to draw our graph accurately enough.

So what are the distinguishing features of a cubic function?

The graph of a hypothetical cubic function 𝑦 = 𝑎𝑥 3 + 𝑏𝑥 2 + 𝑐𝑥 + 𝑑 is shown below:


𝑦
𝑦 − intercept




Point of inflection


𝑥



𝑥 − intercepts

Turning points / Stationary points
The distinguishing features are:

 The 𝒙 − and 𝒚 − intercepts
Where the graph cuts the 𝑥 and 𝑦 axes respectively
These are found by setting 𝑦 = 0 and 𝑥 = 0 respectively.
 The stationary points
Where the graph has a horizontal tangent.
An example of a stationary point that we are familiar with is that of a turning point.
But not all stationary points are turning points.
The stationary points are found by finding the points where the derivative of the curve is 0.
𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑦 ′ = 𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 = 0.
 The point of inflection
This is the point where the curve goes from being concave up to concave down or vice versa.
This is also the point where 𝑦 ′′ = 0.
A graph is A graph is
CONCAVE UP CONCAVE DOWN
when all of its when all of its
tangent lines are tangent lines are
below the curve. above the curve.
(Arms up) (Arms down)

 Shape
The final distinguishing feature is the shape of the graph, subtle changes in the equation of
the function can make drastic changes to the shape of the curve.


1

, The graph on the left:
 increases first then decreases and then increases again,
 has two distinct turning points (stationary points)
The graph on the right:
 initially decreases, then appears to flatten out, but then decreases again without ever
increasing
 has no distinct turning point, but does have a point (3;27) where the tangent to the curve is
horizontal (definition of a stationary point)
Despite the differences, they both only have one 𝑥 − intercept, not the 3 that we saw in our
hypothetical example.

STEPS TO SKETCHING A CUBIC FUCTION:

STEP 1: Determine the BASIC SHAPE of the graph:

If 𝑎 > 0 then the graph will start off increasing from left to right
If 𝑎 < 0 then the graph will decrease initially

𝑎>0 𝑎<0




Why does the graph look the way it looks?

For 𝑎 > 0:

When 𝑥 is a negative number of a large magnitude, then 𝑦 will also be a high magnitude negative
number, on the other hand as 𝑥 gets very large 𝑦 will get very large too. This causes the tails on the
left and right to go off towards negative infinity and positive infinity, respectively.

This is because when we cube a large number it will dwarf the same number squared and cubing
preserves signs whereas squaring a number is always positive. Cubing a smaller number is closer in
value to squaring the same value.

Cubing a fraction on the other hand will have a lower magnitude than squaring the same fraction.




2
$3.27
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
kalebroodt

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
kalebroodt Cape Peninsula University of Technology
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
3
Documenten
49
Laatst verkocht
3 jaar geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen