Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting eigenschappen en stellingen: Hogere Wiskunde 1

Vendu
30
Pages
38
Publié le
21-11-2021
Écrit en
2021/2022

Dit is een samenvatting van alle eigenschappen stellingen die gekend moeten zijn voor het examen Hogere Wiskunde 1.

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
21 novembre 2021
Nombre de pages
38
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Hoofdstuk I: “De bouwstenen”
I.1 Wiskundige taal, notaties en bewijzen
Definitie: nieuwe verzamelingen uit twee verzamelingen A en B
❖ Unie = de verzameling van objecten die behoren tot A of B.
➢ A ⋃ B = {x | x ϵA of x ε B}

❖ Doorsnede = de verzameling van objecten die behoren tot A en B.
➢ A ∩ B = {x | x ε A en x ε B}

❖ Verschil = de verzameling van objecten die behoren tot A maar niet tot B.
➢ A\B = {x | x ε A en x ∉ B}

❖ Cartesiaans product = de productverzameling van de koppels (= geordende
tweetallen (a,b)) waarbij a behoort tot A en b behoort tot B.
➢ A X B = {x | a ε A en b ε B}



Propositie: basiseigenschappen van orde en vermenigvuldiging in R
1) Voor alle reële getallen x, y en z geldt: als x < y en y < z, dan is x < z

2) Voor alle reële getallen x, y en z geldt: als x < y en z > 0 dan is xz < yz



Regels voor het bewijzen
Directe bewijzen
Bewering die begint met ∃ (“er bestaat een”) → geef een expliciet voorbeeld
Bewering die begint met ∀ (“voor alle geldt”) → begin met “Kies een willekeurige …”

Bewijzen door gevalsonderscheid → gevallen onderscheiden

Bewijzen door contrapositie
Om uitspraak p ⇒ q te bewijzen, is het soms handiger om (niet p) ⇒ (niet q) te bewijzen.

Bewijzen uit het ongerijmde
Veronderstel dat het te bewijzene niet waar is en leidt zo een contradictie af.

Bewijzen met inductie
1) Start: 1 ϵ S
2) Inductiehypothese
3) Inductiestap




1

,I.2 Getallenverzamelingen
De structuur van Q
Eigenschappen van de optelling in Q
1) + is associatief: COMMUTATIEVE
∀𝑥, 𝑦, 𝑧: (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) GROEP
2) 0 is neutraal element: ∀𝑥: 𝑥 + 0 = 𝑥 = 0 + 𝑥
3) ∀𝑥, ∃𝑦: 𝑥 + 𝑦 = 0 = 𝑦 + 𝑥
4) + is commutatief: ∀𝑥, 𝑦: 𝑥 + 𝑦 = 𝑦 + 𝑥

Eigenschappen van de vermenigvuldiging in Q
5) ・is associatief: ∀𝑥, 𝑦, 𝑧: (𝑥𝑦) 𝑧 = 𝑥 (𝑦𝑧) COMMUTATIEVE
6) 0 is neutraal element: ∀𝑥: 𝑥1 = 𝑥 = 1𝑥 GROEP
7) ∀𝑥, ∃𝑦: 𝑥𝑦 = 1 = 𝑦𝑥
8) ・is commutatief: ∀𝑥, 𝑦: 𝑥𝑦 = 𝑦𝑥

Eigenschap die ・verbindt met + 1→9
9) ・is distributief tov +: VELD
∀𝑥, 𝑦, 𝑧: 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧)

Eigenschappen die de bewerkingen verbinden met de orde 1 → 11
10) ∀𝑥, 𝑦, 𝑧: 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧
11) ∀𝑥, 𝑦, 𝑧: (𝑥 ≤ 𝑦 𝑒𝑛 0 ≤ 𝑧) ⇒ 𝑥𝑧 ≤ 𝑦𝑧 GEORDEND VELD

Eigenschap verschil tussen orde op N en Z en die op Q TOTAAL GEORDEND
12) ∀𝑥, 𝑦: 𝑥 ≤ 𝑦 𝑜𝑓 𝑦 ≤ 𝑥 VELD

Eigenschap verschil tussen orde op N en Z en die op Q DICHT TOTAAL
12) ∀𝑥, 𝑦 𝑚𝑒𝑡 𝑥 < 𝑦, ∃𝑧: 𝑥 < 𝑧 < 𝑦 GEORDEND VELD



Proposities: begrensdheid van een niet-lege deelverzameling A
❖ A is naar boven begrensd door x: ∀𝑎 ε 𝐴: 𝑎 ≤ 𝑥 Als A een majorant en minorant
❖ A is naar onder begrensd door x: ∀𝑎 ε 𝐴: 𝑥 ≤ 𝑎 heeft, noemen we ze begrensd.

❖ A heeft een maximum M: ∀𝑎, 𝑀 ϵ 𝐴: 𝑎 ≤ 𝑀 Een max. en min. moeten tot A
❖ A heeft een minimum m: ∀𝑎, 𝑚 ϵ 𝐴: 𝑚 ≤ 𝑎 behoren.

❖ A heeft een infimum als A een grootste Als A een max. en min. heeft of
ondergrens heeft. begrensd is, dan heeft A een
❖ A heeft een supremum als A een kleinste infimum en een supremum.
bovengrens heeft. Omgekeerd geldt dit niet.




2

,Propositie: de structuur van R
R heeft de supremumeigenschap R is het enige
12) dat hieraan
∀𝐴 𝑐 𝑅, 𝐴 ≠ φ, 𝐴 𝑖𝑠 𝑛𝑎𝑎𝑟 𝑏𝑜𝑣𝑒𝑛 𝑏𝑒𝑔𝑟𝑒𝑛𝑠𝑑 ⇒ 𝑠𝑢𝑝(𝐴) 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑖𝑛 𝑅 voldoet.
12)
∀𝐴 𝑐 𝑅, 𝐴 ≠ φ, 𝐴 𝑖𝑠 𝑛𝑎𝑎𝑟 𝑜𝑛𝑑𝑒𝑟 𝑏𝑒𝑔𝑟𝑒𝑛𝑠𝑑 ⇒ 𝑖𝑛𝑓(𝐴) 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑖𝑛 𝑅



Definitie: de verzameling Q in R
Q is dicht in R: 𝐴𝑙𝑠 𝑥, 𝑦 ϵ 𝑅 𝑒𝑛 𝑥 < 𝑦, 𝑑𝑎𝑛 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑒𝑟 𝑒𝑒𝑛 𝑞 ϵ 𝑄 𝑧𝑜𝑑𝑎𝑡 𝑥 < 𝑞 < 𝑦.



Definitie: Binomium van Newton
Als 𝑎, 𝑏 ϵ 𝑅 𝑒𝑛 𝑛 ϵN0. Dan is



Binominiaalcoëfficiënt:




Propositie: eigenschap voor Binomium van Newton




3

, Definitie: intervallen
Interval = een niet lege deelverzameling I van R waarvoor elk element van R dat tussen
twee elementen van I ligt, tot I behoort.
❖ 𝐴𝑙𝑠 𝑧 ϵ 𝑅 𝑒𝑛 𝑥, 𝑦 ϵ 𝐼 𝑧𝑜𝑑𝑎𝑡 𝑥 ≤ 𝑧 ≤ 𝑦, 𝑑𝑎𝑛 𝑚𝑜𝑒𝑡 𝑧 ϵ 𝐼.

1) Open interval = als A leeg is of als er rond elk punt 𝑎 ϵ 𝐴 een open interval bestaat
dat helemaal in A ligt.
❖ 𝐴𝑙𝑠 𝑒𝑟 𝑣𝑜𝑜𝑟 𝑒𝑙𝑘𝑒 𝑎 ϵ 𝐴 𝑒𝑒𝑛 δ > 0 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑧𝑜𝑑𝑎𝑡 ]𝑎 − δ, 𝑎 + δ[ ⊆ 𝐴.

2) Gesloten interval = als en slechts als R\A open is.



Propositie: oefening 4 (p32)
Als A naar beneden begrensd is, dan is -A naar boven begrensd en sup(-A) = -inf(A).



Propositie: oefening 6 (p32)
❖ 𝐴𝑙𝑠 𝑎 ≤ 𝑏 𝑒𝑛 0 ≤ 𝑐, 𝑑𝑎𝑛 𝑖𝑠 𝑎𝑐 ≤ 𝑏𝑑.
❖ 𝐴𝑙𝑠 𝑎 ≤ 𝑏, 𝑑𝑎𝑛 𝑖𝑠 − 𝑎 ≥ − 𝑏.



Algebraïsche structuur van Rn (op natuurlijke manier rekenen)
Definitie: vectorruimte
V is een vectorruimte over R. Rn is dus een vectorruimte over R. De elementen van Rn
noemt men daarom ook vectoren.



Definitie: de basis van Rn
Standaardbasisvectoren in Rn




Lineaire combinatie van de vectoren e1, e2, e3, … , en :


Een basis van Rn = elke deelverzameling van vectoren uit Rn waarvoor elke x ε Rn op juist
één manier geschreven kan worden als lineaire combinatie van die vecoren.
➢ Standaardbasis van Rn = de basis van Rn met de standaardbasisvectoren.


4
$10.87
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 2 avis
1 année de cela

2 année de cela

4.0

2 revues

5
1
4
0
3
1
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
amelie_vd Katholieke Universiteit Leuven
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
94
Membre depuis
6 année
Nombre de followers
73
Documents
6
Dernière vente
2 semaines de cela

4.3

12 revues

5
6
4
4
3
2
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions