100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

What Is Applied Mathematics

Rating
-
Sold
-
Pages
76
Uploaded on
04-10-2021
Written in
2021/2022

What Is Applied Mathematics. Applied mathematics is a broad subject area dealing with those problems that come from the real world. Applied mathematics deals with all the stages for solving these problems, namely:

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
October 4, 2021
Number of pages
76
Written in
2021/2022
Type
Class notes
Professor(s)
Jordi-lluis figueras
Contains
All classes

Subjects

Content preview

Applied Mathematics.

Jordi-Lluı́s Figueras

October 9, 2014

,ii

,Contents

Some words v

1 What is Applied Mathematics. 1


I Mathematical modelling 3
2 Dimensional analysis and Scaling. 7
2.1 Dimensions and units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Laws and unit free laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Pi theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Example 1: Atomic bomb. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Example 2: Heat transfer problem. . . . . . . . . . . . . . . . . . . . 13
2.4 Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13


II Analytical methods. 15
3 Perturbation methods. 17
3.1 Regular perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Poincaré-Lindstedt method. . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Big O and little o notation. . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Singular perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Boundary layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 The WKB approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Calculus of variations. 27
4.1 Variational problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Necessary conditions for extrema. . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Normed linear spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Derivatives of functionals. . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 The simplest problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Generalizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Higher derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii

, iv CONTENTS

4.4.2 Several functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3 Natural boundary conditions. . . . . . . . . . . . . . . . . . . . . . . 33
4.5 More problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Dynamical systems. 35
5.1 Discrete dynamical systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.1 Equilibria and stability. . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Continuous dynamical systems. . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Vector fields and phase space portraits. . . . . . . . . . . . . . . . . . 38
5.2.2 Stationary orbits and stability. . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Periodic orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Chaotic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Introduction to partial differential equations. 43
6.1 Some examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Linearity and superposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Laplace’s equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Evolution problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Eigenfunction expansions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Sturm-Liouville problems. 51

8 Theory of transforms. 53
8.1 Laplace transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Other transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Integral equations. 59
9.1 Volterra equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2 Fredholm equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.1 Fredholm equations with degenerate kernel. . . . . . . . . . . . . . . 62
9.2.2 Symmetric kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.3 Perturbation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Appendices 67

A Solving some ODEs. 69
A.1 First order linear ODEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Second order linear ODEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
$8.20
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
philemonmaloka

Get to know the seller

Seller avatar
philemonmaloka Academic Group
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
5
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions