100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Logica en formele systemen Tips & Tricks voor het afleiden van formules

Beoordeling
3.0
(1)
Verkocht
5
Pagina's
5
Geüpload op
18-09-2021
Geschreven in
2020/2021

Dit document bevat tips & tricks (met uitgewerkte voorbeelden) om het afleiden (natuurlijke deductie) van de meeste formules uit de propositielogica te vergemakkelijken. Eindscore: 19/20, behaald op het examen van het vak "Logica en formele systemen" gegeven door professor Olga De Troyer. Vergeet zeker niet om een kijkje te nemen op de bundel met 60 volledig uitgewerkte afleidingen die ook op mijn Stuvia-account te vinden is!

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
18 september 2021
Aantal pagina's
5
Geschreven in
2020/2021
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

Tips & Tricks

Anders dan bij eerder geziene testmethoden van gevolgtrekkingen, zoals waarheidstabellen en
semantische tableaus, vergt het afleiden creatief denkwerk. Gelukkig zijn er toch nog enkele
vuistregels die het afleiden van de meeste formules vergemakkelijken. Hieronder leg ik handige
technieken uit aan de hand van voorbeelden:
1) Van beneden naar boven werken

Voorbeeld: p→(q→r) ⊢ (p→q)→(p→r)
Wanneer er in de formule die afgeleid moet worden (de conclusie) implicatietekens optreden, dan
kunnen we in de bewijsboom beter van onder naar boven werken: we analyseren eerst de gewenste
conclusie. De typische manier om zo’n implicatie af te leiden, is door het antecedent (p→q)
als hulpaanname te gebruiken en zo samen met de hoofdaanname p→(q→r)
(p→r) trachten af te leiden. Deze techniek pas je dan nogmaals recursief toe: het volstaat om een
afleiding voor r te vinden met behulp van de hoofdaanname p→(q→r) en de hulpaannames (p→q) en
p. We werken hier met andere woorden van onder naar boven:
Stel φ = p→(q→r)




We mogen nu dus (p→q) en p als hulpaannames gebruiken, want we gaan ze toch intrekken met de
→introductieregel(→I). Vanaf hier moeten we creatief werken; Hoe kunnen we r afleiden uit
p→(q→r), (p→q) en p?
$7.06
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
3 jaar geleden

klein document

3.0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
armancho Vrije Universiteit Brussel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
12
Lid sinds
5 jaar
Aantal volgers
9
Documenten
8
Laatst verkocht
1 maand geleden

4.0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen