100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Cel. & Mol. Neurosciences: Partim Molecular Neurosciences

Rating
4.0
(1)
Sold
9
Pages
58
Uploaded on
03-08-2021
Written in
2021/2022

Extensive and clear summary of the part Molecular Neurosciences of Cellular and Molecular Neurosciences. 1. Introduction 2. Interaction between different ion channels 3. Action potential 4. Presynaptic mechanism 5. Postsynaptic mechanism 6. Methods to stimulate neurons 7. Synaptic plasticity: hippocampus & cortex 8. Synaptic plasticity: cerebellum 9. Synaptic integration

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
August 3, 2021
Number of pages
58
Written in
2021/2022
Type
Summary

Subjects

Content preview

CEL. & MOL. NEUROSCIENCES:
PART II MOLECULAR NEUROSCIENCES
1. Introduction

The complex brain: interaction of 8 levels




- We focus on neurons, synapses and molecules


Charging of a cell membrane




- Cell membrane exist of resistor (R) and capacitor (C)
- R = 1/g !! → resistor ad conductance are hardly associated
- The voltage changes are never instantaneous !
- The current mainly charges the capacitor
o The initial current is mainly capacitive and then the capacitive current decrease (2D)
o As the capacitive current decreases and reaches steady state , the current of the resistor increases
o In C there is only resistor current
o BUT in reality steady state doesn’t exist, there is always changes in voltage
- Input resistance: you put a current and measure the steady state voltage change, then you can measure the
resistance → So it is a measurement



1

,Origin of the resting membrane potential




- Resting potential: due to a disequilibrium in K conc in and out the cell
- B= when we stop the current
→ The decay is exponential
- τm= membrane time constant
o Capacitance = constant, R = can change
o For neurons this is ~10-50ms → it takes 50mss to reach 66% decay of the voltage



Relation between current and potential




- I = g * V = linear equation
o Theoretical
o The slope of the line is determined by conductance → Higher conductance→ Steeper line
o Crosses the axis at 0




2

, - I = g (V-Er) = linear equation
o Ion Channels (conducting membrane current) and synaptic channels (activated by neurotransmitters)
are not dependent on the absolute voltage (V) BUT are dependent on the difference between the
membrane potential and the reversal potential (V-Er)
o Crosses the x-axis at reversal potential → the current changes sign: negative → positive
o Conductance = constant

- Non-linear conductance = voltage gated
o Channels undergo conformational changes depending on voltages
→ Voltage dependent channel opening
o At some voltages → 0 current , at some voltages→ max current
o The transition between the voltages is gradually
o Conductance: changes
- When you cross reversal potential the current becomes positive, ions are now leaving the cell
o This is only possible if there are enough ions = problem for Ca

Note: in practice channels can’t cross their own reversal potential, because there is almost no current at the
reversal potential
Action potential generation




Voltage clamp to measure ionic currents




3

, - The original H&H method is almost not used anymore
- NOW: left: high-tech approach; 2 micro electrodes
o 1 measures the voltage and measures what current you need to inject to stay at the clamp/ desired
level
o The second electrode gives the additional current
o This current is the opposite of the intrinsic current that the neuron is producing
▪ That is why Inward → hyperpolarizing – downward → depolarizing
- BUT if you go in small paths (axon) it doesn’t fit, 2 electrodes are too big
- Right: Patch clamp = solution
o You measure the voltage and inject the current with the same electrodes
o But not perfect


Limitations of H&H model
1) Single channel gating is much more complex than compound currents they measured
2) Inactivation is NOT purely voltage dependent
3) Not all currents are Ohmic

1) Single channel gating is much more complex than compound currents they measured




→ Na inactivates, K doesn’t inactivate, it reaches steady state
→ There is more variability in single channel currents




4

Reviews from verified buyers

Showing all reviews
1 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Katriendc Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
44
Member since
7 year
Number of followers
16
Documents
0
Last sold
3 weeks ago

2.8

4 reviews

5
1
4
1
3
0
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions