100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

ECN302 Inequality and Redistribution Lecture Notes

Rating
-
Sold
-
Pages
6
Uploaded on
16-06-2021
Written in
2020/2021

A full set of the Week 6 lecture notes for this module are provided, with in-depth explanations and references from Wickens (2011) and other further reading resources.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
June 16, 2021
Number of pages
6
Written in
2020/2021
Type
Class notes
Professor(s)
Vito polito
Contains
All classes

Subjects

Content preview

Week 6: 15/03/21


ECN302 – Advanced Macroeconomics – Inequality & Redistribution

Video 1

In the OLG model, there is income inequality because there are different generations of individuals –
some are earning an income whilst some aren’t. There is also consumption inequality in an OLG model.

 In this topic, we will revert back to individuals living infinitely. We assume that agents are
heterogeneous, where they differ for their ability & therefore their potential earnings. This will
generate income inequality in the economy.
 In this model, consumers have the same preferences, so income inequality automatically results
in consumption inequality.
 In this economy, there is no financial market, hence income inequality also implies wealth
inequality in this economy. Because individuals begin with different initial asset holding
positions, there is wealth inequality in this economy.

 Agents live infinitely in this model. There are 2 types of agents, H and L.
 Agent H has higher productivity (& therefore income). They work and pay taxes on labour
income.
 Agent L also works but instead of paying taxes, they receive a subsidy from the govt.
 This is the govts way of redistributing income.

-Production

There are 2 sectors in the economy, i=H,L.

i i i i
Profits generated by individual i: Π t = y t −wt ht

i i i
y t is the revenue produced in time t by individual i, w t is the wage per hour given to individual i and ht is
the hours of labour supplied by individual i.

i i i
Technology constraint: y t =ω t ht , where i=H, L and ω H>ω L.

ω (omega) is the productivity of individual i.

The solution to the firm maximization problem implies that the demand for labour is given by:

w it=ωit

This means that the firm demands labour until the marginal revenue of an additional unit of labour is
equal to the marginal cost.

How to get these two to equal is explained in the video.

-Households

H
φ, share of H household, receive high earnings of w t .

L H L
1 - φ, share L earn low earnings of w t , where w t >w t .

H L
Total consumption: ct = φc t + (1- φ)c t

, Week 6: 15/03/21


Preferences:

Utility function:

γ defines the extent of the desire of consumption of an individual.

When γ=0and consumption = 0, then the individual gets 0 utility.

c ty i γ
,

γ <0 and consumption = 0, then will be infinitely high.
γ

Budget constraints for t ≥ 0:




τ is the tax rate on labour income. 0<τ <1. If it is 0, there is no taxation. If it is 1, then all income is taxed.

xt is transfer from the government received by low-productivity type.

The govt therefore taxes income of the high income earners and redistributes it to low income earners.

Without government intervention, τ =0 and x = 0 and there will be wage, income, wealth and
consumption inequality in this model due to differences in ability between individuals.

-Government

The government runs a balanced budget.

H
For t ≥ 0 the budget constraint is: (1 - φ) xt + gt = φτ tw t ht

LHS = Govt expenditure and RHS = Govt revenue

xt measures intra-generations redistribution carried out by the government and gt government
consumption (per worker).

Video 2

-Feasibility

The feasibility condition says that aggregate output in the economic (which is the weighted average of
the output produced by the high and low productivity workers) must be equal to aggregate demand:

H L
yt = φ y t + (1 – φ) y t = ct +gt

-Solving the model for the high productivity type:

The Lagrangian and first-order conditions for consumption and labour of high-income are:
$11.66
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jennadubasia

Also available in package deal

Get to know the seller

Seller avatar
jennadubasia The University of Sheffield
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
4 year
Number of followers
1
Documents
9
Last sold
4 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions