100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Wiskunde

Rating
4.0
(1)
Sold
7
Pages
49
Uploaded on
31-05-2021
Written in
2020/2021

Samenvatting van ppt en cursus + veel formulariums

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 31, 2021
Number of pages
49
Written in
2020/2021
Type
Summary

Subjects

Content preview

Wiskunde
1. Reële functies
1.1. Basisbegrippen
1.1.1. Functie en functievoorschrift
Definitie:
Een functie f is een relatie tussen twee verzamelingen X en Y, zodat
met ieder element x ∈ X juist één element y ∈ Y gekoppeld.



Notaties:

• Functie f: X -> Y
- X: definitiegebied def(f)
- Y: beeld im(f)

• Functievoorschrift y = f(x)
- x: argumennt
- y: functiewaarde in punt x

• Reële functie f: X = def(f) ∈ ℝ
Y = ℝ, im(f) ∈ ℝ

1.1.2. Definitiegebied en beeld
Definitie
Gegeven een functie f:X -> Y, dan is

• Verzameling X van x-waarden: het definitiegebied van f,
genoteerd als def(f)
• Verzameling Y waarin y waarden aanneemt: het codomein van f
• Deelverzameling van Y die bestaat uit de beelden v.d. elementen
van X: het beeld van f, genoteerd als im(f)



1.1.3. Grafische voorstelling
Orthogonaal assenstelsel: x-as ⊥ y-as
y = f(x) → punten met coördinaten: (x,y) = (x, f(x))

, 1.1.4. Stijgen en dalen
Functie f gedefinieerd in interval l:

f stijgend: grotere x-waarden afgebeeld op grotere y-waarden

f dalend: grotere x-waarden afgebeeld op kleinere y-waarden

 f stijgend in l als ∀ x1<x2 in l geldt: f(x1) ≤ f(x2)
 f dalend in l als ∀ x1<x2 in l geldt: f(x1) ≥ f(x2)
 f strikt stijgend als ∀ x1<x2 in l geldt: f(x1) < f(x2)
 f strikt dalend als ∀ x1<x2 in l gelft: f(x1) > f(x2)


Definitie:

Een functie wordt (strikt) stijgend/dalend genoemd indien ze
stijgend/dalend is in gans het definitiegebied.



1.1.5. Bijzondere punten
Nulpunt

Een nulpunt v.e functie f is een punt x0 ∈ def(f) waarvoor geldt dat f(x0)=0

 Oplossen door f(x)=0


Globaal extrema

Een functie f bereikt een globaal maximum in x0 als ∀ x in def(f) geldt dat
f(x0) ≥ f(x).

Een functie f bereikt een globaal minimum in x0 als ∀ x in def(f) geldt dat
f(x0) ≤ f(x).

 Oplossen door f’(x)=0

Lokaal extrema

Een functie f bereikt een lokaal maximum in x0 als er een 𝛿 > 0 bestaat
zodanig dat f(x0) ≥ f(x) ∀ x-waarden die ∈ ]x0-𝛿, x0+ 𝛿[ ∩ def(f)

Een functie f bereikt een lokaal minimum in x0 als er een 𝛿 > 0 bestaat
zodanig dat f(x0) ≤ f(x) ∀ x-waarden die ∈ ]x0-𝛿, x0+ 𝛿[ ∩ def(f)

 Oplossen door f’’(x)=0

,1.1.6. Even, oneven en periodieke functies
Een functie f wordt even genoemd als voor elke x v. def(f) geldt dat:

f(x) = f(-x)



Een functie wordt oneven genoemd als voor elke x v. def(f) geldt dat:

f(x) = -f(-x)

 Grafiek is punt symmetrisch t.o.v. oorsprong
 f(0)=0

Bestaat er een vast getal 𝜔 ∈ ℝ, zodanig dat ∀ x ∈ def(f) waarvoor ook
x+ 𝜔 ∈ def(f), geldt dat:

f(x+ 𝜔) = f(x)
Dan heet de functie f periodiek met periode 𝜔.

 Grafisch: functiekromme herhaalt na elk interval met breedte 𝜔
 Grafiek met periode 𝜔: door f te tekenen in interval [x0,x0+ 𝜔]


1.1.7. Inverse van een functie
De inverse relatie v.e. functie f, genoteerd als f-1, is gedefinieerd door:

(x0,y0) ∈ f-1 als en slechts als (x0,y0)



 Inverse relatie niet altijd functie!
Als ∀ x1 ≠ x2 dan geldt dat f(x1) ≠ f(x2), dan is f-1 functie
 Grafiek f en f-1 symmetrisch
 Def(f-1) = im(f)



1. Inverse v.e. lineaire functie = lineaire functie

f(x) = ax + b a≠0

y = f-1(x)
 x = f(y)
 x = ay + b
1 𝑏
 y = 𝑎x – 𝑎

, 2. Inverse v.e. kwadratische functie ≠ functie

f(x) = ax2 + bx + c a≠0

vb. f(x)=x2 y = f-1(x)
 x = f(y)
 x = y2
 y = √𝑥 of y = -√𝑥



3. Inverse v.e. kwadratische functie met beperkt def.gebied = functie

f(x) = ax2 + bx + c a≠0

vb. f(x)=x2, x≥0 y = f-1(x)
 x = f(y)
 x = y2
 y = √𝑥



1.2. Veeltermfuncties
Een veeltermfunctie is een f van de vorm…

y = f(x) = anxn + an-1xn-1 + … + a0, an ≠ 0

…waarbij de graad n v.d. veeltermfunctie 𝜖 ℕ, de coëfficiënten a0, a1,…,an
𝜖 ℝ en def(f) = ℝ.



Constante functie: n=0 dus graad 0 → y = a0

 Elke x-waarde dezelfde y-waarde
 Rechte door (0,a0) \\ x-as
 Geen nulpunten



Lineaire functie: n=1 dus graad 1 → y = a1x + a0

 a1 ≠ 0
 Rechte met 1 nulpunt
 Snijpunten met assen (-a0/a1, 0) en (0,a0)



Kwadratische functie: n=2 dus graad 2 → y = a2x2 + a1x + a0

 a2 ≠ 0
 parabool met 1,2 of geen nulpunten
$12.69
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all reviews
4 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mltmdk Hogeschool Gent
Follow You need to be logged in order to follow users or courses
Sold
195
Member since
5 year
Number of followers
100
Documents
38
Last sold
4 days ago
Samenvattingen

Hallo! Ik ben een student biomedische laboratoriumtechnologie aan HoGent. Ik verkoop mijn samenvattingen dus hier twee puntjes over mijn samenvattingen: Ik vat vaak heel gedetailleerd samen omdat ik liever uit 1 volledig document studeer en ik gebruik vaak afkortingen of probeer alles in stapjes te zetten. Als je een afkorting /zin/woord.. niet begrijpt mag je mij zeker een berichtje sturen! Veel succes met de komende examens! Groetjes x

Read more Read less
4.4

30 reviews

5
13
4
15
3
2
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions