100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Data Mining for Business & Governance full course

Rating
-
Sold
3
Pages
133
Uploaded on
29-04-2021
Written in
2020/2021

Summary of 133 pages for the course Data Mining For Business And Governance at UVT (Full course notes)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 29, 2021
Number of pages
133
Written in
2020/2021
Type
Summary

Subjects

Content preview

DATA MINING FOR BUSINESS AND GOVERNANCE
Chris Emmery, Çiçek Güven & Gonzalo Nápoles



TABLE OF CONTENTS

Introduction to Data Mining ........................................................................................................................... 5
1. What is Data Mining? ................................................................................................................................ 5
1.1. Key aspects: Computation & Large data sets .................................................................................... 5
1.2. Big Data ............................................................................................................................................. 6
1.3. Applications ....................................................................................................................................... 6
2. What makes prediction possible?............................................................................................................... 6

3. Data Mining as Applied Machine Learning ................................................................................................ 7
3.1. Supervised learning ........................................................................................................................... 7
3.2. Unsupervised Learning ...................................................................................................................... 8

Introduction to Data Science ......................................................................................................................... 10
1. What is data science?............................................................................................................................... 10
1.1. Example ........................................................................................................................................... 10
1.2. Terminology..................................................................................................................................... 10
1.3. The algorithm .................................................................................................................................. 12
1.4. Evaluation ........................................................................................................................................ 12
1.5. Computer hardware ........................................................................................................................ 13
2. Representing data .................................................................................................................................... 14
2.1. How do we get data? ....................................................................................................................... 14
2.2. File formats: raw-level representation of files ................................................................................ 15
2.3. Databases: storing the data a bit more cleverly .............................................................................. 16
2.4. Data science in practice: 80% vs. 20% ............................................................................................. 16
2.5. Representation of data .................................................................................................................... 16

Articles week 1 ............................................................................................................................................. 17

Prediction (SL): regression & classification .................................................................................................... 20
1. What makes prediction possible?............................................................................................................. 20
1.1. Correlation Coefficient: Pearson’s r................................................................................................. 20
2. Regression ................................................................................................................................................ 23

3. Classification ............................................................................................................................................ 24
3.1. Decision boundaries to label parts of a data as being a certain category ....................................... 26
3.2. ML algorithms for classification using decision boundaries ............................................................ 26
3.3. Multiclass classification (ó binary classification) ........................................................................... 35
4. Fitting and tuning ..................................................................................................................................... 36
4.1. Fitting............................................................................................................................................... 37



1

, 4.2. Tuning .............................................................................................................................................. 38

5. Evaluation ................................................................................................................................................ 43
5.1. Metrics for evaluating a Regression Task ........................................................................................ 43
5.2. Metrics for evaluating a Classification Task..................................................................................... 43
5.3. Schemes for applying metrics in model selection ........................................................................... 46
5.4. Best practices & common pitfalls .................................................................................................... 49
6. Models ...................................................................................................................................................... 55
6.1. Model selection ............................................................................................................................... 55
6.2. What is ‘learning’? ........................................................................................................................... 55

Working with Text data ................................................................................................................................ 56
1. Representing text as vectors .................................................................................................................... 56
1.1. Converting to numbers .................................................................................................................... 56
2. Binary vectors for Decision Tree classification (ID3) ................................................................................. 58
2.1. Inferring rules (decisions) by information gain: EX: Spam detection .............................................. 58
3. Using Vector Spaces and weightings ........................................................................................................ 62
3.1. Binary vs. Frequency........................................................................................................................ 62
3.2. Term frequencies............................................................................................................................. 62
3.3. (Inverse) document frequency ........................................................................................................ 64
3.4. Putting it together: tf * idf weighting............................................................................................... 64
3.5. Normalizing vector representations ................................................................................................ 65
4. Document classification using 𝑘-NN ........................................................................................................ 66
4.1. 𝓵𝟐 normalization ............................................................................................................................. 66
4.2. Cosine similarity .............................................................................................................................. 67
4.3. Using similarity in 𝒌-nn.................................................................................................................... 67
5. Practical examples.................................................................................................................................... 70
5.1. Naive text cleaning .......................................................................................................................... 70
6. Document classification ........................................................................................................................... 73
6.1. Sentiment analysis ........................................................................................................................... 73
6.2. Build a model ................................................................................................................................... 75
6.3. Test our model ................................................................................................................................ 82

Dimensionality reduction .............................................................................................................................. 83
1. The importance of dimensions ................................................................................................................. 83

2. Visualization ............................................................................................................................................. 85
2.1. Box plots .......................................................................................................................................... 85
2.2. Histogram ........................................................................................................................................ 85
2.3. Scatter plots..................................................................................................................................... 85
3. Dimensionality reduction ......................................................................................................................... 86
3.1. Feature selection ............................................................................................................................. 86
3.2. Feature extraction ........................................................................................................................... 88
4. Deep neural networks .............................................................................................................................. 90

Unsupervised learning .................................................................................................................................. 91




2

, 1. Techniques................................................................................................................................................ 92
1.1. CRISP trough k-means algorithm (most important method) ........................................................... 92
1.2. Fuzzy trough Fuzzy c-means algorithm............................................................................................ 93
1.3. Hierarchical clustering ..................................................................................................................... 95
2. Distance function...................................................................................................................................... 96
3. Evaluation method ................................................................................................................................... 97
3.1. The Silhouette coefficient/score ..................................................................................................... 97
3.2. Dunn index ...................................................................................................................................... 97

Association mining........................................................................................................................................ 98
1. Measures: support & confidence .............................................................................................................. 99
1.1. Support ............................................................................................................................................ 99
1.2. Confidence....................................................................................................................................... 99
2. Mining association rules......................................................................................................................... 100
3. A priori algorithm ................................................................................................................................... 101
3.1. The algorithm ................................................................................................................................ 101
3.2. Considerations ............................................................................................................................... 102
3.3. Setting the support parameter (minsup)....................................................................................... 102
3.4. Pattern evaluation ......................................................................................................................... 103
4. Itemset taxonomy .................................................................................................................................. 104
4.1. Maximal frequent itemset ............................................................................................................. 104
4.2. Closed itemset ............................................................................................................................... 104
4.3. Maximal vs. closed......................................................................................................................... 105
5. Quantitative association rules ................................................................................................................ 105

Mining massive data ................................................................................................................................... 107
1. Parallelization......................................................................................................................................... 107
1.1. Requirements ................................................................................................................................ 108
1.2. How does parallelization work? .................................................................................................... 109
2. Bagging, Boosting, and Batching ........................................................................................................... 111
2.1. Boosting (ex. AdaBoost) ................................................................................................................ 111
2.2. Averaging (ex. Bagging, Random Forests) ..................................................................................... 113
2.3. Batching (online learning) ............................................................................................................. 115
2.4. Drawbacks of ensemble methods ................................................................................................. 116

3. Distributed Computing ........................................................................................................................... 117
3.1. Distributing Machine Learning models .......................................................................................... 117
3.2. Distributed file storage .................................................................................................................. 118
3.3. Map reduce ................................................................................................................................... 119

Deep learning ............................................................................................................................................. 121
1. A brief history of AI ................................................................................................................................. 121
1.1. Alan Turing .................................................................................................................................... 121
1.2. Sci-project (1974) .......................................................................................................................... 122
1.3. The Sojourner Rover (1997) .......................................................................................................... 123
1.4. “Sub-symbolic” AI (1988-2016) ..................................................................................................... 123



3

, 2. Recognizing patterns .............................................................................................................................. 123
2.1. Neural networks ............................................................................................................................ 123
2.2. McCulloch-Pitts Neurons (1947).................................................................................................... 125
2.3. Deep Learning (2015) .................................................................................................................... 126
3. Many successes of DL ............................................................................................................................. 131
4. Conclusion .............................................................................................................................................. 133




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
clairevanroey Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
119
Member since
8 year
Number of followers
96
Documents
32
Last sold
11 months ago

3.1

13 reviews

5
3
4
4
3
0
2
3
1
3

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions