100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Lecture 4 - proteins; structure and function

Rating
-
Sold
-
Pages
13
Uploaded on
29-03-2021
Written in
2020/2021

Summary of lecture, book and additional material about protein structure and protein function.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Chapter 3: page 109-140, not 124-126 and 128-133
Uploaded on
March 29, 2021
Number of pages
13
Written in
2020/2021
Type
Summary

Subjects

Content preview

Lecture 4 (BOOK) – Proteins:
structure and function
(Thunnissen)
Chapter 3: page 109-140, not 124-126 and 128-133

CH3 Proteins
The shape and structure of proteins
There are 20 different amino acids bwhich make up a protein molecule. The amino acids are linked to
its neighbours through a covalent peptide bond, proteins are therefore known as polypeptides.
The repeating sequence of atoms along the core of the polypeptide chain is referred to as the
polypeptide backbone. Attached to this are side chains which gave each amino acid its unique
properties.

The folding of a protein is determined by non-covalent bonds formed between the chain and/or side
chains. There are three types of these weak bonds which have all been mentioned before: hydrogen
bonds, electrostatic bonds and van der Waals attractions. Although these bondings may be weak,
the combined forces of large numbers of non-covalent bonds determines the stability of each folded
shape.




Hydrophobic clustering force is a fourth weak force which also has a central role in determining the
shape of a protein. Hydrophobic molecules tend to be forced together in aqueous environments in
order to minimise their disruptive effect on the hydrogen-bonded network of water molecules.




Conformation of lowest energy

, Most proteins have a particular three-dimensional structure which is determined by the order of the
amino acids in its chain. The final folded structure called the conformation is generally the one that
minimises its free energy.
Denaturing is the unfolding of a protein, and renaturing is the refolding of a protein.
Although a protein chain can fold itself without help, proteins called molecular chaperones often
assist in protein folding.

Large proteins usually consist of several protein domains which are structural units that fold more or
the less independently of each other.

The alpha helix and beta sheet
There are two regular folding patterns found called the alfa helix and the beta sheet. Both patterns
result from hydrogen bonding between N-H and C=O groups in the polypeptide backbone, without
involving the side chains.
A beta sheet occurs when two backbones run in the same orientation (parallel chains) and an alpha
helix is generated when a single polypeptide chain twists around on itself to form a rigid cilinder.
Alpha helices can wrap around eachother to form a stable structure called a coiled-coil. This can form
when the a helices have most of their non polar (hydrophobic) side chains on one side so they can




twist around each other with these side chains facing inward.

Four levels of organisation
Scientists distinguish four levels of organisation in the structure of a protein.
The primary structure is the amino acid sequence. Stretches of polypeptide
chain that form alpha helices or beta sheets constitute the protein’s
secondary structure. The full three-dimensional organisation of a
polypeptide chain is referred to as the tertiary structure. If a particular
protein molecule is formed as a complex of more than one polypeptide
chain, the complete structure is said to be the quaternary structure.

The protein domain is a substructure produced by any contiguous part of a
polypeptide chain that can fold independently of the rest of the protein into
a compact, stable structure. The different domains of a protein are often
associated with different functions.



Protein families
$4.17
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
stijnvantrijp

Also available in package deal

Get to know the seller

Seller avatar
stijnvantrijp Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
12
Member since
5 year
Number of followers
8
Documents
73
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions