ExamQuestions
Study SOLUTIONS
Guide
with Answers
2026//2027
MANUAL
? A+Grade
to
:Page
accompany
- SOLUTIONS
1 of 343-ORBITAL
MANUAL
MECHANICS
to accompany
FORORBITAL
ENGINEERING
MECHANICS
STUDENTS
FOR ENGINEERING
Howard D. Curtis.pdf
STUDENTS
Exam Study
Howard
Guide
D. Curtis
UTIONS MANUAL
2/1/2026 to
Practice
accompany
SOLUTIONS
Questions
ORBITAL
with
MANUAL
Answers
MECHANICS
to?accompany
A+Grade
FOR ENGINEERING
ORBITAL MECHANICS
STUDENTSFOR
Howard
ENGINEERING
D. Curtis.pdf
STUDENTS
Practice Questions
Howard D.with
Curtis
Answers ? A+Grade
, Practice
ExamQuestions
Study SOLUTIONS
Guide
with Answers
2026//2027
MANUAL
? A+Grade
to
:Page
accompany
- SOLUTIONS
2 of 343-ORBITAL
MANUAL
MECHANICS
to accompany
FORORBITAL
ENGINEERING
MECHANICS
STUDENTS
FOR ENGINEERING
Howard D. Curtis.pdf
STUDENTS
Exam Study
Howard
Guide
D. Curtis
SOLUTIONS MANUAL
to accompany
ORBITAL MECHANICS FOR ENGINEERING STUDENTS
Howard D. Curtis
Embry-Riddle Aeronautical University
Daytona Beach, Florida
UTIONS MANUAL
2/1/2026 toPractice
accompany
SOLUTIONS
Questions
ORBITAL
with
MANUAL
MECHANICS
Answers
to ?accompany
A+Grade
FOR ENGINEERING
ORBITAL MECHANICS
STUDENTSFOR
Howard
ENGINEERING
D. Curtis.pdf
STUDENTS
Practice Questions
Howard D.with
Curtis
Answers ? A+Grade
, Practice
ExamQuestions
Study SOLUTIONS
Guide
with Answers
2026//2027
MANUAL
? A+Grade
to
:Page
accompany
- SOLUTIONS
3 of 343-ORBITAL
MANUAL
MECHANICS
to accompany
FORORBITAL
ENGINEERING
MECHANICS
STUDENTS
FOR ENGINEERING
Howard D. Curtis.pdf
STUDENTS
Exam Study
Howard
Guide
D. Curtis
Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
Problem 1.1
(a)
( )(
A A = Axiˆ + Ay ˆj + Azkˆ Axiˆ + Ayˆj + Azkˆ )
( ) ( ) (
= Axiˆ Axiˆ + Ayˆj + Azkˆ + Ayˆj Axiˆ + Ayˆj + Azkˆ + Azkˆ Axiˆ + Ayˆj + Azkˆ )
( ) ( ) ( ) (
= Ax2 (iˆ iˆ) + Ax Ay iˆ ˆj + Ax Az (iˆ kˆ ) + Ay Ax ˆj iˆ + Ay2 ˆj ˆj + Ay Az ˆj kˆ )
( )
+ AzAx (kˆ iˆ) + AzAy kˆ ˆj + Az2 (kˆ kˆ )
= Ax2 (1) + Ax Ay (0) + Ax Az (0) + Ay Ax (0) + Ay2 (1) + Ay Az (0) + Az Ax (0) + Az Ay (0) + Az2 (1)
= Ax2 + Ay2 + Az2
But, according to the Pythagorean Theorem, A 2x + A y2 + A z2 = A2 , where A = A , the magnitude of
the vector A . Thus A A = A2 .
(b)
iˆ ˆj kˆ
A (B C) = A Bx By Bz
Cx Cy Cz
( ) ( )
= Ax iˆ + Ay ˆj + Azkˆ iˆ ByCz − BzCy − ˆj (BxCz − BzCx ) + kˆ BxCy − ByCx
( )
( )
= Ax ByCz − BzCy − Ay (BxCz − BzCx ) + Az BxCy − ByCx ( )
or
A (B C) = AxByCz + AyBzCx + AzBxCy − AxBzCy − AyBxCz − AzByCx (1)
Note that (A B) C = C (A B) , and according to (1)
C (A B) = CxAyBz + Cy AzBx + Cz AxBy − CxAzBy − Cy AxBz − Cz AyBx (2)
The right hand sides of (1) and (2) are identical. Hence A ( B C) = (A B) C .
(c)
iˆ ˆj kˆ iˆ ˆj kˆ
(
A (B C) = Axiˆ + Ayˆj + Azkˆ Bx ) By Bz = Ax Ay Az
Cx ByCz − BzCy BzCx − BxCy BxCy − ByCx
Cy Cz
( ) (
= Ay BxCy − ByCx − Az (BzCx − BxCz ) iˆ + Az ByCz − BzCy − Ax BxCy − ByCx ˆj
) ( )
+ A (B C − B C ) − A B C − B C kˆ
x z x x z y y z z y
( )
( y x y z x z y y x z z x) ( x y x z y z x x y z z y)
= A B C + A B C − A B C − A B C iˆ + A B C + A B C − A B C − A B C ˆj
( x z x y z y x x z y y z)
+ A B C + A B C − A B C − A B C kˆ
= Bx (AyCy + AzCz ) − Cx (AyBy + AzBz ) iˆ + By (AxCx + AzCz ) − Cy (AxBx + AzBz ) ˆj
z( x x y y) z( x x y y)
+ B A C + A C − C A B + A B kˆ
Add and subtract the underlined terms to get
1
UTIONS MANUAL
2/1/2026 toPractice
accompany
SOLUTIONS
Questions
ORBITAL
with
MANUAL
MECHANICS
Answers
to ?accompany
A+Grade
FOR ENGINEERING
ORBITAL MECHANICS
STUDENTSFOR
Howard
ENGINEERING
D. Curtis.pdf
STUDENTS
Practice Questions
Howard D.with
Curtis
Answers ? A+Grade
, Practice
ExamQuestions
Study SOLUTIONS
Guide
with Answers
2026//2027
MANUAL
? A+Grade
to
:Page
accompany
- SOLUTIONS
4 of 343-ORBITAL
MANUAL
MECHANICS
to accompany
FORORBITAL
ENGINEERING
MECHANICS
STUDENTS
FOR ENGINEERING
Howard D. Curtis.pdf
STUDENTS
Exam Study
Howard
Guide
D. Curtis
Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
( ) (
A (B C) = Bx AyCy + AzCz + AxCx − Cx AyBy + AzBz + AxBx iˆ
)
( ) (
+ By AxCx + AzCz + AyCy − Cy AxBx + AzBz + AyBy ˆj
)
( y y z z z x x y y)
+ B A C + A C + A C − C A B + A B + A B kˆ
z x x z z
( )
(
= B x iˆ + B y ˆj + B z k ˆ ) (A C + A C + A C ) − ( C i ˆ + C ˆ j + C k ˆ ) (A B + A B
x x y y z z x y z x x y y + Az Bz )
or
A (B C) = B(A C) − C(A B)
Problem 1.2 Using the interchange of Dot and Cross we get
(A B) (C D) = (A B) C D
But
(A B) C D = − C (A B) D (1)
Using the bac – cab rule on the right, yields
(A B) C D = −A(C B) − B(C A) D
or
(A B) C D = −(A D)(C B) + (B D)(C A) (2)
Substituting (2) into (1) we get
(A B) C D = (A C)(B D) − (A D)(B C)
Problem 1.3
Velocity analysis
From Equation 1.38,
v = vo + rrel + vrel . (1)
From the given information we have
vo = −10Iˆ + 30Jˆ − 5 0K̂ (2)
( ) ( )
rrel = r − ro = 150Iˆ − 200Jˆ + 300K̂ − 300Iˆ + 200Jˆ + 100K̂ = −150Iˆ − 400Jˆ + 200K̂ (3)
Iˆ Jˆ K̂
rrel = 0.6 −0.4 1.0 = 320Iˆ − 270Jˆ − 300K̂ (4)
−150 −400 200
2
UTIONS MANUAL
2/1/2026 toPractice
accompany
SOLUTIONS
Questions
ORBITAL
with
MANUAL
MECHANICS
Answers
to ?accompany
A+Grade
FOR ENGINEERING
ORBITAL MECHANICS
STUDENTSFOR
Howard
ENGINEERING
D. Curtis.pdf
STUDENTS
Practice Questions
Howard D.with
Curtis
Answers ? A+Grade