100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual for How to Read and Do Proofs: An Introduction to Mathematical Thought Processes 6th Edition

Beoordeling
-
Verkocht
-
Pagina's
224
Cijfer
A+
Geüpload op
16-01-2026
Geschreven in
2025/2026

Complete solutions manual for How to Read and Do Proofs: An Introduction to Mathematical Thought Processes 6th Edition. Includes step-by-step solutions to exercises, helping students master mathematical reasoning, proofs, and problem-solving techniques.

Meer zien Lees minder
Instelling
How To Read And Do Proofs
Vak
How to Read and do Proofs











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
How to Read and do Proofs
Vak
How to Read and do Proofs

Documentinformatie

Geüpload op
16 januari 2026
Aantal pagina's
224
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

  • proofs study guide

Voorbeeld van de inhoud

(Exam-Ready style)Solutions Manual for How to Read and
2026doUpdated
Proofs An
Questions
Introduction
& Verified
to Mathematical
Answers Thought Processes, 6e Daniel Solow (AllPage
Chapters)
1 of 224100% COM




Solutions Manual for
How to Read and do
Proofs An
Introduction to
Mathematical Thought
Processes, 6e Daniel
Solow (All Chapters)




2026/2027
Solutions
study year:
Manual
Solutions
for How
Manual
to Read
for and
Howdo
toProofs
Read and
An Introduction
do Proofs An to
Introduction
Mathematical
to Mathematical
Thought Processes,
Thought
6e Daniel
Processes,
Solow
6e (All
Daniel
Chapters).pdf
Solow (All Chapters)
Page 1

,(Exam-Ready style)Solutions Manual for How to Read and
2026doUpdated
Proofs An
Questions
Introduction
& Verified
to Mathematical
Answers Thought Processes, 6e Daniel Solow (AllPage
Chapters)
2 of 224100% COM




1
Solutions to Exercises

1.1 (a), (c), and (e) are statements.

1.2 (a), (c), and (d) are statements.

1.3 a. Hypothesis: The right triangle XYZ with sides of lengths
x and y and hypotenuse of length z has an
area of z 2 /4.
Conclusion: The triangle XYZ is isosceles.
b. Hypothesis: n is an even integer.
Conclusion: n2 is an even integer.
c. Hypothesis: a, b, c, d, e, and f are real numbers for which
ad − bc 6= 0.
Conclusion: The two linear equations ax + by = e and
cx + dy = f can be solved for x and y.

1.4 a. Hypothesis: r is a real number that satisfies r 2 = 2.
Conclusion: r is irrational.
b. Hypothesis: p and q are positive real numbers such that

pq 6= (p + q) /2.
Conclusion: p 6= q.
c. Hypothesis: f(x) = 2−x for all real numbers x.
Conclusion: There exists a real number x such that
0 ≤ x ≤ 1 and f(x) = x.



1




2026/2027
Solutions
study year:
Manual
Solutions
for How
Manual
to Read
for and
Howdo
toProofs
Read and
An Introduction
do Proofs An to
Introduction
Mathematical
to Mathematical
Thought Processes,
Thought
6e Daniel
Processes,
Solow
6e (All
Daniel
Chapters).pdf
Solow (All Chapters)
Page 2

,(Exam-Ready style)Solutions Manual for How to Read and
2026doUpdated
Proofs An
Questions
Introduction
& Verified
to Mathematical
Answers Thought Processes, 6e Daniel Solow (AllPage
Chapters)
3 of 224100% COM




2 SOLUTIONS TO EXERCISES IN CHAPTER 1


1.5 a. Hypothesis: A, B and C are sets of real numbers with A ⊆ B.
Conclusion: A ∩ C ⊆ B ∩ C.
b. Hypothesis: For a positive integer n, the function f defined by:

 n/2, if n is even
f(n) =

3n + 1, if n is odd

For an integer k ≥ 1, f k (n) = f k−1 (f(n)), and f 1 (n) = f(n).
Conclusion: For any positive integer n, there is an integer k > 0 such that
f k (n) = 1.
c. Hypothesis: x is a real number.
Conclusion: The minimum value of x(x − 1) ≥ −1/4.

1.6 Jack’s statement is true. This is because the hypothesis that Jack did
not get his car fixed is false. Therefore, according to rows 3 and 4 of Table
1.1, the if/then statement is true, regardless of the truth of the conclusion.

1.7 Jack’s statement is false. This is because the hypothesis, getting his
car fixed, is true while the conclusion, not missing the interview, is false.
Therefore, according to row 2 of the Table 1.1, the if/then statement is false.

1.8 Jack won the contest. This is because the hypothesis that Jack is younger
than his father is true, and, because the if/then statement is true, row 1 of
Table 1.1 is applicable. Therefore, the conclusion that Jack will not lose the
contest is also true.

1.9 a. True because A : 2 > 7 is false (see rows 3 and 4 of Table 1.1).
b. True because B : 1 < 2 is true (see rows 1 and 3 of Table 1.1).

1.10 a. True because 1 < 3 is true (see rows 1 and 3 of Table 1.1).
b. True if x 6= 3 (see rows 3 and 4 of Table 1.1).
False when x = 3 because then the hypothesis is true and the conclu-
sion 1 > 2 is false (see row 2 of Table 1.1).

1.11 If you want to prove that “A implies B” is true and you know that B
is false, then A should also be false. The reason is that, if A is false, then
it does not matter whether B is true or false because Table 1.1 ensures that
“A implies B” is true. On the other hand, if A is true and B is false, then
“A implies B” would be false.

1.12 When B is true, rows 1 and 3 of Table 1.1 indicate that the statement
“A implies B” is true. You therefore need only consider the case when B is
false. In this case, for “A implies B” to be true, it had better be that A is
false so that row 4 of Table 1.1 is applicable. In other words, you can assume
B is false; your job is to show that A is false.




2026/2027
Solutions
study year:
Manual
Solutions
for How
Manual
to Read
for and
Howdo
toProofs
Read and
An Introduction
do Proofs An to
Introduction
Mathematical
to Mathematical
Thought Processes,
Thought
6e Daniel
Processes,
Solow
6e (All
Daniel
Chapters).pdf
Solow (All Chapters)
Page 3

, (Exam-Ready style)Solutions Manual for How to Read and
2026doUpdated
Proofs An
Questions
Introduction
& Verified
to Mathematical
Answers Thought Processes, 6e Daniel Solow (AllPage
Chapters)
4 of 224100% COM




SOLUTIONS TO EXERCISES IN CHAPTER 1 3


1.13 (T = true, F = false)
A B C B⇒C A ⇒ (B ⇒ C)
T T T T T
T T F F F
T F T T T
T F F T T
F T T T T
F T F F T
F F T T T
F F F T T

1.14 (T = true, F = false)
A B C A⇒B (A ⇒ B) ⇒ C
T T T T T
T T F T F
T F T F T
T F F F T
F T T T T
F T F T F
F F T T T
F F F T F

1.15 (T = true, F = false)
A B B⇒A A⇒B
T T T T
T F T F
F T F T
F F T T
From this table, B ⇒ A is not always true at the same time A ⇒ B is true.

1.16 From row 2 of Table 1.1, you must show that A is true and B is false.

1.17 a. For A to be true and B to be false, it is necessary to find a real
number x > 0 such that log10 (x) ≤ 0. For example, x = 0.1 > 0, while
log10 (0.1) = −1 ≤ 0. Thus, x = 0.1 is a desired counterexample. (Any
value of x such that 0 < x ≤ 1 would provide a counterexample.)
b. For A to be true and B to be false, it is necessary to find an integer
n > 0 such that n3 < n!. For example, n = 6 > 0, while 63 = 216 <
720 = 6!. Thus, n = 6 is a desired counterexample. (Any integer
n ≥ 6 would provide a counterexample.)




2026/2027
Solutions
study year:
Manual
Solutions
for How
Manual
to Read
for and
Howdo
toProofs
Read and
An Introduction
do Proofs An to
Introduction
Mathematical
to Mathematical
Thought Processes,
Thought
6e Daniel
Processes,
Solow
6e (All
Daniel
Chapters).pdf
Solow (All Chapters)
Page 4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LECBEN TUTOR COMPANY
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1233
Lid sinds
1 jaar
Aantal volgers
16
Documenten
718
Laatst verkocht
1 maand geleden

3.6

8 beoordelingen

5
4
4
1
3
1
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen