100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

TEST BANK – A First Course in Differential Equations (12th Edition) All Chapters Covered | Time-Saving Study Guide | Verified & Accurate | Graded A+

Beoordeling
-
Verkocht
-
Pagina's
665
Cijfer
A+
Geüpload op
05-01-2026
Geschreven in
2025/2026

TEST BANK – A First Course in Differential Equations (12th Edition) All Chapters Covered | Time-Saving Study Guide | Verified & Accurate | Graded A+

Instelling
Differential Equations With Modeling Applications
Vak
Differential Equations with Modeling Applications

Voorbeeld van de inhoud

Primedocs



A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual
are included (Ch 1 to 9)
Pr
im
ed
oc


** Immediate Download
s



** Swift Response
** All Chapters included




Primedocs

,Primedocs

Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions ....................................................................................................................................... 1
Exercises 1.1 ....................................................................................................................................................... 1
Exercises 1.2 ..................................................................................................................................................... 14
Exercises 1.3 ..................................................................................................................................................... 22
Chapter 1 in Review Solutions ........................................................................................................................ 30
Pr

END OF SECTION SOLUTIONS
im


EXERCISES 1.1
ed


1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
oc


3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)
s



5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear
in y because of y2. However, writing it in the form (y2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v. However, writing it in the form (v + uv − ueu)(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain y′ = − 12 e−x/2. Then 2y′ + y = −e−x/2 + e−x/2 = 0.




1
Primedocs

,Primedocs

Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 —20t
14. From y = − e we obtain dy/dt = 24e −20t , so that
5 5
dy 6 6
+ 20y = 24e−20t + 20 − e
−20t
= 24.
dt 5 5

15. From y = e3x cos 2x we obtain y′ = 3e3x cos 2x−2e3x sin 2x and y′′ = 5e3x cos 2x−12e3x sin 2x,
so that y′′ − 6y′ + 13y = 0.

16. From y = − cos x ln(sec x + tan x) we obtain y = −1 + sin x ln(sec x + tan x) and
′′ ′′
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [−2, ∞). From y′ = 1+2(x+2)−1/2
we have
′ −1/2
(y − x)y = (y − x)[1 + (2(x + 2) ]

= y − x + 2(y − x)(x + 2)−1/2
Pr

= y − x + 2[x + 4(x + 2)1/2 − x](x + 2)−1/2
im

= y − x + 8(x + 2)1/2 (x + 2)−1/2 = y − x + 8.

An interval of definition for the solution of the differential equation is (−2, ∞) because y′ is
ed


not defined at x = −2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
oc


{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y ′= 25 sec 25x we have
s



y = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (−π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 − x 2 /= 0} or {x x /= −2 or x /= 2}. From y ′=
2x/(4 − x2)2 we have
2
1
y′ = 2x = 2xy2.
4 − x2
An interval of definition for the solution of the differential equation is (−2, 2). Other inter-
vals are (−∞, −2) and (2, ∞).

20. The function is y = 1/ 1 − sin x , whose domain is obtained from 1 − sin x /= 0 or sin x /= 1.
′ 1 −3/2
Thus, the domain is {x x /
= π/2 + 2nπ}. From y = − (1
2 − sin x) (− cos x) we have
2y′ = (1 − sin x)−3/2 cos x = [(1 − sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.



2
Primedocs

, Primedocs

Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X − 1) − ln(X − 1) = t and differentiating x

implicitly we obtain 4

2 dX dX1
− =1 2
2X − 1 dt X − 1 dt
2 1 dX t
− =1 –4 –2 2 4
2X − 1 X −1 dt
–2
2X − 2 − 2X + 1 dX
=1
(2X − 1) (X − 1) dt
–4
dX
= −(2X − 1)(X − 1) = (X − 1)(1 − 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X − 1
Pr

= et
X −1
2X − 1 = Xet − et
im


(et − 1) = (et − 2)X
ed


et — 1
X= .
et − 2
oc


Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution
s


defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

2 dy dy 4
−2x − 4xy + 2y =0
dx dx
2
−x 2 dy − 2xy dx + y dy = 0
x
2xy dx + (x2 − y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y2 − 2x2y − 1 = 0
√ √
for y, we get y = 2x2 ±4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 − x4 + 1 . Both solutions are defined on (−∞, ∞).
The graph of y1(x) is solid and the graph of y2 is dashed.




3
Primedocs

Geschreven voor

Instelling
Differential Equations with Modeling Applications
Vak
Differential Equations with Modeling Applications

Documentinformatie

Geüpload op
5 januari 2026
Aantal pagina's
665
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

$14.49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Primescholar

Maak kennis met de verkoper

Seller avatar
Primescholar Teachme2-tutor
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
1 maand
Aantal volgers
0
Documenten
303
Laatst verkocht
1 week geleden
The Primescholar Test Banks & Practice Exams Graded A+

On this page you will find latest Exams, Test Banks,Solutions Manual, Exam Elaboration, Discussions, Case Studies,Essays and other study materials. We upload clear, concise, high-quality and verified documents at an affordable price. Also, you can check out our package deals already rated with an A+. Kindly help others to benefit from this study materials by leaving a positive review. Your success is our priority, Let\'s achieve those top grades together!!!

Lees meer Lees minder
0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen