Test Bank For Brock Biology of Microorganisms 15th Edition By Michael T. Madigan 2024 A+
Test Bank for Brock Biology of Microorganisms, 15th Edition by Madigan, 9781292235103, Covering Chapters 1-33 | Includes Rationales
Buy the official test bank for Brock Biology of Microorganisms, Madigan,15e
Alles für dieses Buch (61)
Schule, Studium & Fach
Rijksuniversiteit Groningen (RuG)
Biologie
Microbiology (WBBY02205)
Alle Dokumente für dieses Fach (15)
Verkäufer
Folgen
stijnvantrijp
Inhaltsvorschau
HC3 Introduction and Microbial
growth (BOOK)
Chapter 5.1 – 5.7
CH5 Microbial Growth and Regulation
5.1 Binary Fission, Budding, and Biofilms
In microbiology, growth is defined as an increase in the number of cells.
Binary fission means that an cell elongates to about twice its original length and then a septum (kind
of ‘insnoering’) forms and finally completes and the cell divides.
The time required for a cell to divide and thus form a new generation, is called the generation time.
Most bacteria divide by binary fission, but there are other forms of cell division. Budding divisions
form a totally new daughter cell, with the mother cell retaining its original identity. The big difference
between budding bacteria and bacteria that divide by binary fission is that the formation of new cell
wall material in budding division occur at one point (polar growth) while in binary fission it happens
in the whole cell (intercalary growth). Note that for polar growth, large internal membrane
complexes are not partitioned and also need to be formed de novo in the developing bud.
Biofilms
Microbial cells can grow either in suspension or attached to surfaces. The suspended live style (swim
or float in liquid medium) is called planktonic growth. Microorganisms that grow attached to a
surface (sessile growth) can develop into biofilms which are attached polysaccharide matrixes
containing embedded bacterial cells. Biofilms form in stages:
1. Attachment of planktonic cells
2. Production of sticky matrix
3. Further growth and development to form the tenacious and nearly impenetrable mature
biofilm
Some biofilms form multiple layers with different organisms inside the individual layers these
biofilms are called microbial mats.
5.2 Quantitative aspects of microbial growth
In the generation time, both total cell number and cell mass double.
When the cell number of exponential growth is plotted on a logarithmic scale as a function of time
(semilogarithmic graph) the points fall on a straight line. This reflects the fact that the cells are
growing exponentially and that the population is doubling in a constant time interval.
The relationship between the initial number of cells in a culture and the number present after a
period of exponential growth: N = No x 2n
Where N is the final number, N0 the initial number and n the number of generations.
Generation time: g = t / N
The instantaneous growth rate constant (k) expresses the rate at which the population is growing at
any instant, expressed in units of reciprocal hours (h -1). dN/dt = kN by integrating natural logarithms;
N = No x ekt
, 5.3 The microbial growth cycle
A culture of organisms growing in an enclosed vessel, is called a batch culture.
Growth when a microbial culture is inoculated into a fresh growth media only begins after a period of
time, this time is called the lag phase. When a growing culture is tranferred into the same medium
under the same conditions, there will be no lag phase.
In general, prokaryotic cells grow faster than eukaryotes, and small eukaryotes tend to grow faster
than large ones.
Stationary and death phases
When exponential growth ceases (due to essential nutrient depletion or waste products
accumulation), the population enters stationary phase (there is no increase or decrease in cell
number —> growth rate = 0).
Cryptic growth means that some individuals divide, while others die —> net decrease/increase = 0.
During the death phase, the growth number < 0.
5.4 Continuous culture
The environment in batch cultures are constantly changing because of nutrient consumption and
waste production. These limitations can be circumvented in a continuous culture device.
The most common type of continuous culture is the chemostat, a device in which growth rate and
cell density can be controlled independently.
Two factors govern the specific growth rate (the dilution rate (D) = F / V where F is the flow rate and
V culture volume) and cell density (concentration of a limiting nutrient present in the sterile medium
entering the chemostat vessel).
In steady state, the specific growth rate equals D; the rate of increase in cell numbers due to growth
is equal to the rate of decrease in cell numbers due dilution (outflow).
Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:
Garantiert gute Qualität durch Reviews
Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.
Schnell und einfach kaufen
Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.
Konzentration auf den Kern der Sache
Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.
Häufig gestellte Fragen
Was bekomme ich, wenn ich dieses Dokument kaufe?
Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.
Zufriedenheitsgarantie: Wie funktioniert das?
Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.
Wem kaufe ich diese Zusammenfassung ab?
Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer stijnvantrijp. Stuvia erleichtert die Zahlung an den Verkäufer.
Werde ich an ein Abonnement gebunden sein?
Nein, du kaufst diese Zusammenfassung nur für 2,99 €. Du bist nach deinem Kauf an nichts gebunden.