100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Uitwerkingen practica 1 t/m 4 - Deeltoetsen PM Beschrijvende en inferentiële statistiek - Premaster Communicatiewetenschappen

Beoordeling
-
Verkocht
-
Pagina's
48
Geüpload op
13-10-2022
Geschreven in
2021/2022

Uitwerkingen practica 1 t/m 4 - Deeltoetsen PM Beschrijvende en inferentiële statistiek - Premaster Communicatiewetenschappen. Duidelijk overzicht met de stappen die per analyse uitgevoerd moeten worden. Inclusief voorbeelden van tabellen zodat het duidelijk is waar en hoe je de tabellen moet aflezen. Deze aantekeningen heb ik altijd gebruikt bij het maken van de deeltoetsen: eindcijfer = 8,5.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
13 oktober 2022
Aantal pagina's
48
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Jasper muis
Bevat
Alle colleges

Voorbeeld van de inhoud

| Practicum 1: betrouwbaarheidsanalyse, factoranalyse en beschrijvende
analyse

Bij dit vak: ALTIJD op past drukken, NOOIT op ok → Dan kunnen ze je syntax niet lezen
Data open
File > Open > Data

Instelling
Edit > Option > apply
- Variable labels: Display names
- Output > Names and labels en variable and labels

Vraag 1. Hoe ziet de steekproef eruit?
a) Hoeveel mensen hebben deelgenomen aan het onderzoek?
i) Check data view > onderaan
b) Hoeveel mannen en hoeveel vrouwen? Geef ook percentages.
i) Data descriptions > Frequencies > Variabele: geslacht
c) Wat was de gemiddelde leeftijd? En de range?
i) Data descriptions > Descriptives > Leeftijd
d) Hoeveel missende waarden zijn er voor opleiding? Hoe is opleiding verder verdeeld
(in percentages)?
i) Data descriptions > Frequencies > Variabele: opleiding
e) Hoeveel deelnemers hebben een social media account?
i) Data descriptions > Frequencies > Variabele: SNS account

Vraag 2.
Frequentieanalyse
1) Analyze > Descriptive > Frequencies > Alle betreffende variabelen selecteren

Samenhang tussen twee items: correlatiematrix
1) Analyze > Correlate > Bivariate > Alle items selecteren
● Te veel correlaties? → Plak in Excel, zodat je de cellen makkelijk een kleur kan
geven
● Beoordelen sterkte correlatie → zwak (.1), middelmatig (.3), sterk (.5)
● Verbanden zijn significant wanneer p-waarde < 0.5

Vraag 3
Factoranalyse: zijn er meerdere factoren te onderscheiden en hoe interpreteren
1) Analyze > Dimension reduction > Factor
a) Descriptives → AAN: Coefficients en KMO
b) Extraction (method) → ‘Principal axis factoring’ en kies ‘Scree plot’
c) Rotation → AAN ‘Oblique rotatie (direct oblimin)’
d) Options → AAN ‘Exclude cases painwise’ and ‘sorted by size’ en ‘suppress
small coefficients, vul in bij below ‘.30’

● Pairwise = als respondent een vraag is vergeten, dan wordt deze niet verwijderd in
berekening, alleen die ene vraag doet dan niet mee.

, ● KMO criterium geeft aan of data adequaat is om factoranalyse op te doen. Geeft aan
of correlaties wel variëren. Moet boven den .7 zijn. Deze rapporteren bij
factoranalyse.

Criteria kiezen factoren die variantie verklaren (kijk bij Total Variance Explained)
1) Kaiser’s criterium
a) Je selecteert de variabelen die > 1, dit zijn de factoren. Deze factoren
verklaren meer variantie dan de andere variabelen.
2) Scree plot
a) Kijk naar de scree plot, waar zit de knik?
b) Knik - 1 = aantal factoren die variantie verklaren
c) In voorbeeld zag je dat de knik bij 3 zat, dus 3 - 1 = 2.

Pattern Matrix (geroteerde oplossing, beter interpreteerbaar dan factor matrix)
● SPSS kiest zelf de factoren die variantie verklaren
● Je interpreteert hier de factoren
● Factoren zijn losse items en die zeggen iets over de achterliggende factor. A.d.h.v.
hoge ladingen ga je die achterliggende factoren interpreteren (hoge lading = sterke
bijdrage aan factor)
● In voorbeeld zie je dat alle items negatieve gevoelens hebben bij factor 1, bij factor 2
zie je alle items over positieve gevoelens. Wijst erop dat de twee factoren apart
kunnen interpreteren als negatieve en positieve gevoelens. Je benoemt ze als mate
van negatieve en positieve gevoelens.
● Hangen beide factoren samen → check factor correlation matrix (.1 regel), dus ze
hangen nu niet samen -> zwak (.1), middelmatig (.3), sterk (.5)

Vraag 4
Betrouwbaarheidsanalyse
● Hercoderen als nummers niet dezelfde betekenis hebben → Pattern Matrix zien we
de clusters

1) Analyze > Scale > Reliability Analyze
a) Options → AAN ‘Correlations’ en ‘Scale if item deleted’

Vraag 5
Nieuwe schaal maken van twee clusters:
1) Transform > Compute Variable > Schaal aanmaken (in voorbeeld: positief en
negatief) > Function Group: klik ‘All’ > Functions and special variabelen klik ‘Mean’
● Gebruik maken van komma’s i.p.v. + voor de missing values → MEAN(SPANG1,SPANG4)


Vraag 6
Scree plot krijgt voorrang voor Kaiser, mits het interpreteerbaar is
● Als scree plot iets anders laat zien: bijv. 1 factor i.p.v. 2 factoren. → scree plot krijgt voorrang voor
Kaiser gebeuren

2) Analyze > Dimension reduction > Factor
a) Descriptives → AAN: Coefficients en KMO

, b) Extraction (method) → Principal axis factoring en kies Scree plot en kies
‘Fixed number of factors = 1’
c) Rotation → AAN oblique rotatie (direct oblimin)
d) Options → AAN ‘sorted by size’ en ‘suppress small coefficients, below ‘.30’

NOG 1 INVULLEN (laatste) DIE MIST IN TABEL

Reliability analyse
Checken of variabelen omgepoold moeten worden. Ja? →
Recode into different variables

Reliability analyse uitvoeren
● Als je een variabele eruit haalt voor een hogere cronbach alpha dan neem je deze
variabele verder ook niet mee.

Vraag 7
Stel je hebt adolescenten, volwassenen, en ouderen gevraagd van ze het nieuws volgen via
het journaal, de website van een nieuwsorganisatie, of social media (ze geven dus hun
voorkeur op door één van de categorieën te kiezen). Met welke toets kun je nagaan of er
een significante relatie bestaat tussen de drie groepen en hun manier van nieuws vergaren?

ANT: Chi-kwadraat

Vraag 8
Bedenk zelf een voorbeeld van een onderzoek waarbij een independent t-toets de meest
geschikte analyse zou zijn. Noem onafhankelijke en afhankelijke variabelen (doe dat altijd).

ANT:

Vraag 9

, | Practicum 2: regressieanalyse met mediatie

Let op: stel in SPSS de juiste opties in via ‘edit’ en ‘options’:
● Bij het tabblad 'general': klik op 'display names'
● Bij het tabblad ‘output labels’: zet alle labels op ‘names and labels’ en op ‘values and

Bij dit vak: ALTIJD op past drukken, NOOIT op ok → Dan kunnen ze je syntax niet lezen

Vraag 1
Vraag
Bekijk eerst hoe bovengenoemde schalen (variabelen) eruitzien door frequentieverdelingen
te draaien. Wat betekenen hoge/lage scores (hoef je niet te noteren)? Ga vervolgens na of
de zes variabelen onderling samenhangen. Voer deze analyse uit. Wat kun je hier (kort) over
zeggen?

Frequentieanalyse
1) Analyze > Descriptive statistics > Frequencies

Correlatieanalyse: hoe hangen de items met elkaar samen (samenhang)?
1) Analyze > Correlate > Bivariate > Alle items selecteren
● Beoordelen sterkte correlatie → zwak (.1), middelmatig (.3), sterk (.5)
● Verbanden zijn significant wanneer p-waarde < 0.05

Schrijf in je antwoord op of er (geen) samenhang is tussen de twee items en of dit een
zwakke, middelmatige of sterke samenhang is.

Antwoord
Als je de correlaties bekijkt, dan zie je al dat bijna alle variabelen matig (r = -.29, p< .001) tot
sterk (r = .74,p< .001) met elkaar correleren. Alleen de variabelen positieve/negatieve
emoties hebben geen significante correlatie met elkaar.
● Als je een negatieve correlatie hebt dan kan je dat als volgt interpreteren: hoe hoger
je score op het item in het kolom, hoe lager je score op het item in de rij. (In
voorbeeld: hoe hoger je zelfvertrouwen, hoe lager je score op negatieve gevoelens →
vanwege negatieve correlatie. Hoe hoger je zelfvertrouwen, hoe hoger je score op
positieve gevoelens → vanwege positieve correlatie).

Vraag 2
Vraag
Je wilt nu toetsen in hoeverre uiterlijk zelfvertrouwen (Y) voorspeld kan worden door de mate van
bewerkte en authentieke zelfpresentatie (X). De verwachting is dat beide uiterlijk zelfvertrouwen
zullen voorspellen, maar dat bewerkte zelfpresentatie meer variatie in uiterlijk zelfvertrouwen
zal verklaren dan authentieke zelfpresentatie. Voer deze analyse uit door middel van een
multipele regressie-analyse.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
amberengelbracht Hogeschool van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
117
Lid sinds
7 jaar
Aantal volgers
110
Documenten
15
Laatst verkocht
3 jaar geleden

3,5

19 beoordelingen

5
2
4
7
3
9
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen