100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

College aantekeningen Web Data Processing Systems (XM_40020), Master VU AI

Beoordeling
-
Verkocht
3
Pagina's
51
Geüpload op
23-02-2022
Geschreven in
2020/2021

Alle lectures voor het vak WDPS zijn aanwezig in dit document, door dit goed door te nemen en goed te oefenen is een goede cijfer gegarandeerd.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 februari 2022
Aantal pagina's
51
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Jacopo urbani
Bevat
Alle colleges

Voorbeeld van de inhoud


Web Data Processing Systems
Created @October 21, 2020 3:02 PM

Class S2

Type S2

Materials



Lecture 1 (27 Okt 2020)
Introduction to course

Goals
This course is system-oriented. We familiarize with some of the topics that drive research on the Web. With
focus on 2 main themes:

1. Knowledge acquisition from the Web

2. Knowledge consumption



Lecture 2 (27 Okt)
Introduction to Knowledge Bases

limits of text

information retrieval is a field in CS about how to retrieve subset doc from large database.

Traditionally, the retrieval was keyword-based (search engines).

what are good string similarities?

what are good criteria to rank

how can we diversify the results

Recently it changed from keyword-based to entity-based retrieval.

text documents contain data (=latin word for sth that is given). However knowledge is familiarity,
awareness or understanding of someone or something, such as facts, information, descriptions or skills.

in essence what we like to do in order to implement the vision of entity-based search, is to build knowledge
repositories. We want to move away from collection of data/text and build that.

how are knowledge repositories build? 2 methods

Manifest knowledge

meaning accessible to humans, those repositories are called knowledge bases or knowledge
graphs. So content can be described using a graph




Web Data Processing Systems 1

, typically constructed manually or from unstructured sources

we need for this a language we understand, so less ambiguous is best. Logic is the language that
humans designed to express knowledge.

opinion: knowledge is something we can interpret without ambiguities

knowledge base: crystallization of factual knowledge in the form of associations between
entities and relations.

can be expresses as first order logic

recently google re-branded knowledge bases as knowledge-graphs (= same as base but
represented in graphs)




Latent knowledge

Other people suggest that we not need to understand the repository as long as knowledge can be
processed by machine and be used by tasks needing intelligence. Meaning is hidden to us. latent
models or latent feature models

typically learned using machine learning techniques

recently, latent models became very popular due to the rise of deep learning.

see more detail by statistical inference

which is better? different opinions. for some everything can be learned for other knowledge is only
what can be understood.



knowledge bases available on the web

WordNet (NLP oriented), most popular lexical db for english.

idea: create knowledge base of meanings of words. Groups of words into sets of synonyms (synsets)

two important languages related to knowledge bases

RDF

standardized language to exchange knowledge on the Web

RDF is a standard used to report statements that describe properties of resources

Properties are represented by IRIs while resources are either special IRIs, labels or special
placeholders called blank nodes(when you dont know sth)

The statements can be represented as triples of the form (subject predicate object) and serialized
with different formats: RDF/XML, N3, Turtle

RDF dataset can be represented as a directed graph




Web Data Processing Systems 2

, SPARQL

another standardized a specific language of W3C

SPARQL is a query language which has a SQL-inspired syntax. Finding
answers to a SPARQL query corresponds to find all possible graph homomorphisms between the
query and the graph[=knowledge base].




most important knowledge base right now is Wikidata. Created as data function of wikipedia, because that
was mainly text with which verify and keeping consistency is difficult.

Data is validated by the community

Keeps provenance (=herkomst) of the data

Multilingual by design

Supports plurality

high quality knowledge

DBpedia:

Project to convert Wikipedia pages into RDF,

Contains links to other KBs

Fairly large ontology but not rich in terms of expressiveness

YAGO

Unify Wikipedia and Wordnet




Web Data Processing Systems 3

, Exploit Wikipedia Info boxes to extract clean facts

Check the plausibility of facts via type checking

Freebase: discontinued



Lecture 3 (1 Nov)
Knowledge Acquisition


process to extract knowledge (to be integrated into knowledge bases) from unstructured
text or other data




In this course we only look at extracting entities and relations between them from unstructured data.

another important form of extraction consists of detecting events and other temporal expressions. We are not
going to talk about them

NLP Preprocessing

NLP : natural language processing

Typical distinction:

structured data: "databases"

unstructured data: "information retrieval", typically refers to "text"

Semi-structured data, because there is always some structure like title and bullets.



Before we can use some text, we must pre-process it. Std. tasks are:

tokenization

Goal

given a character sequence, split it into subsequences called tokens

tokens are often loosely referred as terms/words

Type vs Token

Token: instance of a sequence of characters in some particular document that are grouped
together as a useful semantic unit ⇒
multiset

Type: class of all tokens containing the same character sequence ⇒ set


Web Data Processing Systems 4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MeldaMalkoc Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
54
Lid sinds
3 jaar
Aantal volgers
34
Documenten
20
Laatst verkocht
5 maanden geleden

3,3

7 beoordelingen

5
2
4
1
3
2
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen