100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Data Mining and Machine Learning (2IIG0): summary

Beoordeling
-
Verkocht
8
Pagina's
22
Geüpload op
29-01-2022
Geschreven in
2021/2022

This document contains a summary with all the necessary functions for you to know for the exam. It includes the notes made by the teacher in the online lectures that are not on the slides. It only includes the first part of the Data Fusion lecture. And there is nothing about How to Lie with Data, because I feel like this is just common sense.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
29 januari 2022
Aantal pagina's
22
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

technische universiteit eindhoven 2IIG0 Data Mining and Machine Learning, Q2 2021-2022




Data Mining and Machine Learning

(2021-2022)


January 29, 2022


0.1 Introduction and Foundations
0.1.1 Linear Algebra
Mathematical rules that apply to vector spaces V :

• Scalar multiplication: α( βv) = (αβ)v for α, β ∈ R and v ∈ V

• Distributivity: (α + β)v = αv + βv and (v + w)α = αv + αw
1
• Well-Defined: v/α = α and v − w.

• Cannot do: v · w and α/v

Matrices:

• A· j is the column-vector j

• Ai· is the row-vector i

• A⊤ is the transpose: swap the row- and columnvectors: A⊤ = A

• For symmetric matrices, it holds that A⊤ = A

• A diagonal matrix has only non zeroes in the diagonal

The innerproduct of two vectors is: v⊤ w = ∑id=1 vi wi and the outer product is vw⊤ .
In the matrix product, every element is calculated by the inner product of row j and column i:
Cij = A j· B·i = ∑rs=1 A js Bsi . The eventual matrix product is the sum of the outer products of the
corresponding row and column vectors: C = ∑rs=1 A·s Bs· .
The multiplication of an n × d matrix with an identity matrix is: In A = A = AId .

For C = AB it holds that C ⊤ = B⊤ A⊤ . For the inverse it holds that AA−1 = A−1 A = I.

Vector Norms: measure the length of vector spaces.

• ||v + w|| ≤ ||v|| + ||w|| (triangle inequality)

• ||αv|| = |α|||v|| (homogeneity)

• ||v|| = 0 ↔ v = 0
q
• Euclidean Norm: ||v||2 = ∑id=1 v2i

• v⊤ w = cos(∠(v, w)||v||||w||

• Manhattan Norm: ||v||1 = ∑id=1 |vi |



/department of computer science 1

,technische universiteit eindhoven 2IIG0 Data Mining and Machine Learning, Q2 2021-2022


For orthogonal vectors it holds that cos (∠(v, w)) = 0 and thus the innerproduct is zero.
For orthonormal vectors, they are orthogonal and ||v|| = ||w|| = 1.
You can normalize vectors by dividing the values by ||ww||
.
ww⊤
The length of the projection pv : || pv || = cos(θ )||v|| = v⊤ ||w
w
||
. pv = ||w||2
v.

Matrix Norms:

• Element-wise L p matrix norms: || A|| p = (∑in=1 ∑m p 1/p
j=1 | A ji | )

• Operator norm: || A||op = max||v||=1 || Av||

• Orthogonal columns: A⊤ A = diag(|| A·1 ||2 , ..., || A·d ||2 )

• Orthonormal columns: A⊤ A = diag(1, ..., 1)

• Orthonormal square matrix: A⊤ A = AA⊤ = I

A vector norm is orthogonal invariant if || Xv|| = ||v||.
A matrix norm is orthogonal invariant if || XV|| = ||V|| where X is an orthogonal matrix.

Trace: tr( A) = ∑in=1 Aii . The sum of the diagonals.

• tr(cA + B) = ctr)( A) + tr( B) (linearity)

• tr( a⊤ ) = tr( A)

• tr( ABCD ) = tr( BCDA) = tr(CDAB) = tr( DABC )

• ||v||2 = v⊤ v = tr(v⊤ v)

• || A|2 = tr( A⊤ A)

Binomial formulas:

• ||x − y||2 = (x − y)⊤ (x − y) = ||x||2 − 2⟨ x, y⟩ + ||y||2

• || X − Y ||2 = || X ||2 − 2⟨ X, Y ⟩ + ||Y ||2

0.1.2 Optimization
Given an objective function f : Rn 7→ R, the objective of an unconstrained optimization
problem is:
minn f ( x )
x ∈R

• x ∗ ∈ arg minx∈Rn f ( x ) is a minimizer

• minx∈Rn f ( x ) is the minimum

The global minimizer: x ∗ → f ( x ∗ ) ≤ f ( x ) for all x
The local minimizer: x0 → f ( x0 ) ≤ f ( x ) for x ∈ N∈ ( x0 ) (domain)

d
Every local minimizer has to be a stationary point (no slope): dx f ( x0 ) = 0. It is a minimizer if
2
d
dx2
f ( x0 ) ≥ 0.




/department of computer science 2

, technische universiteit eindhoven 2IIG0 Data Mining and Machine Learning, Q2 2021-2022


There are multiple types of partial derivatives f : Rd 7→ R:
∂ f (x) ∂ f (x) ∂ f (x)
Jacobian: ∂x = ( ∂x1 ... ∂xd ) ∈ R1×d
 ∂ f (x) 
 ∂x. 1 
 . ∈R
Gradiant:∇ x f ( x ) =  .  d

∂ f (x)
∂xd

First Order Necessary Condition: if x is a local minimizer of f : Rd 7→ R and f is contin-
uously differentiable in an open neighbourhood of x; ∇ f ( x ) = 0 → stationary point.
Second Order Necessary Condition: if x is a local minimizer of f : Rd 7→ R and ∇2 f is con-
tinuous in an open neighbourhood of x; ∇ f ( x ) = 0 and ∇2 f ( x ) is positive semi definite.

A matrix is positive semidefinite if x ⊤ Ax ≥ 0 for all x ∈ Rd .

The constrained optimization problem consist of two parts:
• objective function: f : Rd 7→ R

• constraint functions: ci , gk : Rd 7→ R
min f ( x ) → ci ( x ) = 0 1≤i≤m
x ∈Rn

min f ( x ) → gk ( x ) ≥ 0 1≤k≤l
x ∈Rn
The set that satisfies is the feasible set C . FONC and SONC will not work. There should be
checked at the boundaries.

It is possible to transform constrained problems to unconstrained via the Langragian formula:
m l
L( x, λ, µ) = f ( x ) − ∑ λi ci ( x ) − ∑ µ k gk ( x )
i =1 k =1

This introduces the dual objective function Ldual :

min f ( x ) ≥ inf L( x, λ, µ) ≥ inf L( x, λ, µ) = Ldual (λ, µ)
x ∈C x ∈C x ∈Rd

The dual problem is maxλ,µ Ldual (λ, µ). The solution of the primal problem is always bounded
below by the solution to the dual problem: f ∗ ≥ Ldual
∗ .


Another option is numerical optimization. This is iterative and therefore updates the solu-
tion. There are two main numerical optimizations:
( t +1) (t) (t) (t)
Coordinate Descent: all coordinates are fixed except one. xi ← arg minxi f ( x1 , ..., xi , ..., xd ).
Each value of t is smaller than the previous one.
Gradient Descent: used if the gradient is known. The stepsize needs to be small enough.
xt+1 ← xt − η ∇ f ( xt ). The stepsize is η.

Convex optimization: every local minima is a global minima.
The convex set X : if and only if the line segment between every pair of points in the set is
in the set: for all x, y ∈ X and α ∈ [0, 1] : αx + (1 − α)y ∈ X .
The convex function: if and only if α ∈ [0, 1] and x, y ∈ Rd :

f (αx + (1 − α)y ≤ α f ( x ) + (1 − α) f (y).

The objective of the convex optimization problem is minx∈Rn f ( x ) s.t. x ∈ C .
! If f ( x ) is convex, every local minimizer x ∗ is a global minimizer !



/department of computer science 3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
datasciencestudent Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
39
Lid sinds
5 jaar
Aantal volgers
31
Documenten
15
Laatst verkocht
8 maanden geleden

3,5

2 beoordelingen

5
1
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen