100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary theory calculus (2WBB0) for final exam

Beoordeling
-
Verkocht
-
Pagina's
22
Geüpload op
19-08-2022
Geschreven in
2021/2022

Summary theory calculus (2WBB0) for final exam











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 augustus 2022
Aantal pagina's
22
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

2WBB0 – calculus
Summary fi nal exam

Contents
P.1 Real numbers and the real line........................................................................................4
Rules for inequalities........................................................................................................... 4
Intervals.............................................................................................................................. 4
Absolute value.................................................................................................................... 4
Properties of absolute values..............................................................................................4
Equations and inequalities involving absolute values..........................................................4
P.2 Cartesian coordinates in the plane...................................................................................5
Increments and distances...................................................................................................5
Distance D between P(x1, y1) and Q(x2, y2).........................................................................5
Straight lines....................................................................................................................... 5
Equations of lines................................................................................................................5
P.3 Graphs of quadratic equations.........................................................................................6
Circles and disks.................................................................................................................6
Equations of parabolas.......................................................................................................6
Shifting a graph...................................................................................................................6
P.4 functions and their graphs................................................................................................6
P.5 Combining functions to make new functions....................................................................7
Sums, differences, products, quotients and multiples.........................................................7
Composite functions...........................................................................................................7
Piecewise defined functions................................................................................................7
P.6 Polynomials and rational functions...................................................................................7
The factor theorem..............................................................................................................7
Roots and factors of quadratic polynomials.........................................................................8
P.7 the trigonometric functions...............................................................................................8
Some useful identities.........................................................................................................8
Other trigonometric functions..............................................................................................9
Sine law.............................................................................................................................. 9
Cosine law.......................................................................................................................... 9
1.1 Examples of velocity, growth rate, and area...................................................................10
The area of a circle........................................................................................................... 10
Average velocity................................................................................................................ 10
1.2 Limits of functions........................................................................................................... 10
One-sided limits................................................................................................................ 10

, The squeeze theorem.......................................................................................................10
1.3 Limits at infinity and infinite limits....................................................................................10
Limits at infinity and negative infinity.................................................................................10
Limits at infinity for rational functions................................................................................10
Infinite limits...................................................................................................................... 11
1.4 Continuity....................................................................................................................... 11
Continuity at an interior point............................................................................................11
Right and left continuity.....................................................................................................11
2.1 Tangent lines and their slopes........................................................................................12
The slope of a curve......................................................................................................... 12
Normals............................................................................................................................ 12
2.2 The derivative................................................................................................................. 12
Right derivative................................................................................................................. 12
Left derivative................................................................................................................... 12
2.3 Differentiation rules.........................................................................................................13
Differentiation rules........................................................................................................... 13
The reciprocal rule............................................................................................................ 13
The quotient rule............................................................................................................... 13
2.4 The chain rule................................................................................................................. 13
2.5 Derivatives of trigonometric functions.............................................................................13
An important trigonometric limit.........................................................................................14
Derivative of sine function.................................................................................................14
Derivative of cosine function.............................................................................................14
Derivatives of other trigonometric functions......................................................................14
2.8 The mean-value theorem................................................................................................14
3.1 Inverse functions............................................................................................................ 15
3.2 Exponential and logarithmic functions............................................................................15
Laws of logarithms............................................................................................................ 15
3.5 The inverse trigonometric functions................................................................................15
4.3 Indeterminate forms........................................................................................................16
4.4 Linear approximation......................................................................................................17
4.10 Taylor polynomials........................................................................................................17
5.4 Properties of the definite integral....................................................................................18
Mean-value theorem for integrals......................................................................................18
5.5 The fundamental theorem of calculus.............................................................................18
Part I................................................................................................................................. 18
Part II................................................................................................................................ 19

, 5.6 The method of substitution.............................................................................................19
Integrals of tangent, cotangent, secant, and cosecant......................................................19
6.1 Integration by parts.........................................................................................................20
6.2 Techniques of integration...............................................................................................20
6.5 Improper integrals........................................................................................................... 20
Improper integrals of type I...............................................................................................20
Improper integrals of type II..............................................................................................20
7.9 First-order differential equations.....................................................................................21
Separable equations......................................................................................................... 21
First-order linear equations...............................................................................................21
€7,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jbtue

Maak kennis met de verkoper

Seller avatar
jbtue Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
7
Lid sinds
6 jaar
Aantal volgers
7
Documenten
11
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen