100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Law and Technology

Beoordeling
-
Verkocht
3
Pagina's
113
Geüpload op
20-12-2024
Geschreven in
2024/2025

De samenvatting is gemaakt op basis van het boek en de slides. Beide documenten zitten er dus in verwerkt. De structuur van het boek, wat handig is tijdens het openboekexamen kun je zeer gemakkelijk raadplegen en verwijzingen naar bepaalde secties in het boek zijn aanwezig. Dit geeft je een zeer goeie leidraad tijdens het studeren.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
20 december 2024
Aantal pagina's
113
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Law and technology

Part I. Technology, economy & society

Chapter 1. An introduction to information technology for lawyers

Section 1. introduction

Technology is neither good nor bad, nor is it neutral

- Lees: Melvin Kranzberg (1986) Technology and History: “Kranzberg’s Laws”.
Technology and Culture, 27(3), 544-560. doi:10.2307/3105385

§2. Technology, society, economy

All three influence each other

- Societies needs are the basis of new technological changes, which impacts the
economy. And you can say the exact same thing the other way around

§3. Summary

How does the technology work?

- How is the hardware (physical parts) / software (instructions / code) designed?
- Which models are used?
- How are models trained?
- Which data is used?

Who has designed the technology?

How well does the technology work?

How secure is the technology?

Section 2. how does technology work

§1. Hardware vs. software

Computer systems are built of two components

Hardware

- All physical parts
- Harddrives, memory keyboard,…

Software

- All instructions and codes that make hardware work

§2. Which models are used

The internet exists thanks to big data architecture

- Uses: camera sensors, internet traffic, …
- Thanks to algorithms
o Is an sequence of instructions that describes how to realise a goal
o Is a code that gathers information and derives it in a specific way (used for
the needed goals)

These techniques are characterized by 5V’s

- Volume: vast amount of data that it processes
- Velocity: speed which it generates data
o It has to adapt to each situation and data change

, - Variety: two main types
o Structured: data stored in a table or relational database, easy to gather
o Unstructured: more difficult to gather and process
 Images, videos, sound, social media texts, radiographical images, …
- Veracity: quality of sources and informations can vary
- Value: common goal is to value these data
o Give meaning to it
o Scientific domains, business to calculate better company traject, economy
and sustainability
o Law enforcement: analyzing of criminal records and following everything

§3. Artificial intelligence

Basis blocks to be AI

- Interact with environment
o By analyzing the world around itself (collecting and processing information)
using camera’s to gather and process info
- Reason and plan in the real world
o Ex. Route planner has to make a good decision for the best route
- Ability to learn and adapt
o Learn from mistakes

An intelligent agent is a system that can fulfill a function in its environment and learn and
adapt in that environment

§4. Which models are used and trained

Machine learning: ML models

- Large amount of data and examples that make a computer able to learn certain
things itself, no need to specific programming
- Predictive ML-model
o Comes to a specific outcome by analysing the data (input)
o It needs to be trained with examples that are labelled in order for it to
distinguish each thing from another
 Diagnosing a sickness
o Constructing the model with examples = training it
o Danger: overfitting
 ð not being able to generalize beyond it
- Unsupervised ML-model
o Finding structures in data
 Spotify music taste
- Reinforcement ML-model
o Aim to learn a control policy
o They have a goal and learn the optimal way to reach it by learning by itself
and positive feedback

Neural networks and deep learning

- Artificial neural network (ANN): mathematical abstraction to link things (aka
neurons in brain)
- ð Multi-layer perceptron (MLP): techniques needs to be combined to make a better
AI
- Renewed interest
o 1. Better progressing speed of data
o 2. Better image analysis in order to process larger and more complex types
- Disadvantages

, o Need lots of data to train
o Need lots of computational power to train it
o Built on the data and not possible to know what the data is (for users)
 It’s difficult for humans tot trust these models
o Vulnerable to adverbial attacks

Natural language processing

- The Turing test: system is intelligent if a human cannot distinguish it from another
human
- Needs
o Answering correctly, remembering historical conversations, knowledge
about the real world, generate sensible answers
o Good language structure, writer and spoken
o Learning if their way of formulating it is positively evaluated by the human
- Now it’s very realistic
o Only thing missing: understanding the semantic of the output and not only
giving an answer based on statistics

Section 3. cryptocurrencies, blockchain, cryptography

Enhancing trust in these systems

- Used for online banking and accessing panels
- Public-private key

Blockchain and cryptocurrencies

- Reaction to power of central banks
- How to trust
o No central authority: trust comes from mathematical properties
o Identity management: personal keys and privacy from pseudonymity
o Same principles as classic monetary systems
 Enough money, no double transactions, …
o No money accumulation, but chain transaction results
- Spendings controlled by blockchain
o No double spending
o Mining

Section 4. impact on society

Changes the way of communication, business, entertainment, information consumption,


Great promise, with caution

- Attacks or hacking
- The panacea view: it is not neutral, so beware
o A lot of discrimination in the data, so the output is also discriminating

Need to cooperate with AI, rather than letting it replace us




Chapter 2. The rise of platforms in the digital economy

, Section 1. introduction

2011 – “Why software is eating the world” – Marc Andreessen

- Predicted that large parts of the economy would be software-enterprises
ð came true: Amazon, Google, Meta, …

Creative destruction (Schumpeter)

- Came true: new structures replace older less innovative ones

Exponential growth of digital economy

Centrality of digital platforms is big: 7 largest companies are digital markets

- Influence our social behaviour, economy, entertainment, …
- Covid-19 helped this
o More technology advances with governmental help

Section 2. platforms as a business model

Term

- Originally: a set of technical specifications or (building blocks’ upon which third
parties could develop products, services or technologies
o This structure helped others to develop business models more easily
 Booksellers with ISBN, barcodes, …

Platforms became actual business models itself

- Traditional models: enterprises focus on transformation of raw materials into a
product
- Digital platform: provide services

Digital platform

- Central idea: bringing two or more groups together to connect, interact,…
o At least two
- Success is efficiency matchmaking
o Netflix algorithm
- They facilitate interactions and transactions

Intermediate position between supply and demand

- The more market groups the more complicated the business model
- 1. Two-sided: bringing two sides of groups together
o Visa: payment between customer and seller
o Uber
- 2. Multi-sided
o Facebook: app developers, advertisers, users, …
- 3. Platform ecosystems: interconnects multiple platforms
o Google, Alphabet, Amazon

Section 3. platform characteristics

§1. Use of digital technology

The use of special software technology makes the connection users easier and attracts
them

- Attracting by matchmaking

Purely digital

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
student30320 Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
21
Lid sinds
1 jaar
Aantal volgers
10
Documenten
13
Laatst verkocht
3 maanden geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen