100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

samenvatting medische statistiek

Beoordeling
5,0
(1)
Verkocht
2
Pagina's
43
Geüpload op
03-11-2024
Geschreven in
2023/2024

samenvatting wetenschappelijke vorming 2 partim medische statistiek inclusief het gebruik van R. Alles wat je nodig hebt voor het open boek examen van prof S. Abrams.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
3 november 2024
Aantal pagina's
43
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

MEDISCHE STATISTIEK (BA2)
INHOUDSOPGAVE
overzicht .................................................................................................................................................. 3
Welk model heb ik nodig ..................................................................................................................................... 3
Model op schrijven .............................................................................................................................................. 3

Linaire regressie ....................................................................................................................................... 4
Wat is linaire regressie? ....................................................................................................................................... 4
internet ....................................................................................................................................................................................... 4
Wanneer gebruiken we lineaire regressie .................................................................................................................................. 4
Verschillende regressiemodellen ................................................................................................................................................ 4

Enkelvoudige lineaire regressie............................................................................................................................ 5
Inleidend voorbeeld (aan de hand hier van verder uitgelegd).................................................................................................... 5
Enkelvoudig lineair regressiemodel ............................................................................................................................................ 5
We kunnen ongepaarde t test schrijven als lineaire regressie ................................................................................................... 6
Kleinste kwadraten kriterium...................................................................................................................................................... 7
Verklarende statistiek voor a en b (Reg SS, Res SS, en total SS) ................................................................................................. 9
F-test voor enkelvoudiug lineaire regressie ................................................................................................................................ 9
t-test voor enkelvoudige lineaire regressie............................................................................................................................... 11

Betrouwbaarheidsintervallen ............................................................................................................................ 12
Betrouwbaarheidsinterval voor regressieparamters a en b..................................................................................................... 12
Predictieinterval voor y horende bij een geven x-waarde ........................................................................................................ 12
Predictie- vs betrouwbaarheidsinterval voor E(y) hoerende bij een geven x waarde .............................................................. 14

Correlatie coëfficient ......................................................................................................................................... 15
Wat is de correlatie coëfficient (r) ........................................................................................................................................... 15
Verband tussen b en r ............................................................................................................................................................... 15

Meervoudige regressie ...................................................................................................................................... 16
Wat is meervoudige lineaire regressie ...................................................................................................................................... 16
Voorbeeld hypertensie (aan de hand hiervan verder uitgelegd) .............................................................................................. 16
regressieparrameters (welke, hoe vergelijken, ..)..................................................................................................................... 17
Meervoudig lineair regressiemodel .......................................................................................................................................... 18
Globale F-test: toetsen voor de hele groep regressoren .......................................................................................................... 19
partiele t-test: toetsen voor 1 regressor ................................................................................................................................... 20
Patiele F-test: toetsen voor 1 regressor .................................................................................................................................... 21
Intercatie-effecten .................................................................................................................................................................... 24

Veralgemeende lineaire regressie .......................................................................................................... 25
Logistische regressie .......................................................................................................................................... 25
Bernouilli verdeling ................................................................................................................................................................... 25
Voorbeeld variacella ................................................................................................................................................................. 25
Logistische regressie: linkfuncties ............................................................................................................................................. 25
Logistisch regressiemodel ......................................................................................................................................................... 26
maximum Likelihood methode ................................................................................................................................................. 27

1

, Interpretatie van de rico ........................................................................................................................................................... 28
Betrouwbaarheidsintervallen ................................................................................................................................................... 29
Likelihood ratio testen: categroische variabelen ...................................................................................................................... 30
Meervoudige logistische regressie ............................................................................................................................................ 30

Poisson regressie ............................................................................................................................................... 32
Poisson verdeling ...................................................................................................................................................................... 32
Voorbeeld SENIC data ............................................................................................................................................................... 32
Poisson regressie....................................................................................................................................................................... 33
Interpretatie van de resultaten ................................................................................................................................................. 34
Betrouwbaarheidsintervallen (idem) ........................................................................................................................................ 35
Likelihood ratio test: categroische variabelen .......................................................................................................................... 35
Meervoudige poisson regressie ................................................................................................................................................ 35
AIC (akaike’s information criteria.............................................................................................................................................. 37

Cox regressie .......................................................................................................................................... 38
Wat is cox regressie ........................................................................................................................................... 38
Wanneer gebruiken?................................................................................................................................................................. 38
Kenmerken survival anlyse........................................................................................................................................................ 38
Voorbeeld: duur van remmisie in klinische studie voor accute leukemie ................................................................................ 38
Wat is een event time stochastische veranderlijke?................................................................................................................. 39
Types censurering ..................................................................................................................................................................... 39

Belangrijke concepten voor cox regressie (verschillende functies) ..................................................................... 40
Dichtheidsfunctie f(t*) .............................................................................................................................................................. 40
Verdelingsfunctie F(t*) .............................................................................................................................................................. 40
Survival functie S(t*) ................................................................................................................................................................. 40
Hazerd functie l(t*) .................................................................................................................................................................. 40

Niet parametrische schating van S(t*)................................................................................................................ 41
In geval zonder censurering ...................................................................................................................................................... 41
In geval met rechtse censurering (Kaplan-Meier schatter) ....................................................................................................... 41

Cox proportinoal hazard model ......................................................................................................................... 42
Model: ....................................................................................................................................................................................... 42
Voor voorbeeld leukemie herval ............................................................................................................................................... 43




2

,OVERZICHT

WELK MODEL HEB IK NODIG

X (covartiaat) Y (uitkomstvariabele) Test of model
Categorisch Continu t-test
(bv geneesmiddel wel - One-sample t-test: als we steekproef doen bij 1 groep en
of niet gekregen, test die vgl met vaste waarde
xel of niet gedaan, …) - Gepaarde t-test: als we steekproef doen met 2 groepen
van gepaarde gegevens bv mensen voor programma en
die zelfde mensen na programma
- Ongepaarde t-test: als we steekproef doen bij 2 groepen
ongepaard bv groep met programma en andere groiep
zonder
- One way-anova: als we steekproef doen bij 3 of meer
groepen
Dichitoom = binair z-test
- One sample z-test: als we steekproef doen bij 1 groep en
die vgl met vaste waarde
- Two sample z-test: als we de steekproef doen bij 2
groepen en die vergelijken
Numeriek: Continu Lineaire regressie
Continu of discreet - Enkelvoudige lineaire regressie: indien maar 1 covariaat
- Meervoudige linaire regressie: indien meerder
covariaten
Binair Veralgemeende lineaire regressie: logistische regressie
Discreet Veralgemeende lineaire regressie: piosson regressie
Continu Cox regeressie
(overleidingstijd)


MODEL OP SCHRIJVEN

Linaire regressie
1) Y½X ~ N(µ,s2) à y volgt een normale verdeling met gemiddelde µ (hangt af van x) en variantie s2
2) h(x)= ß0+ß1x à systematische component: covariaten
3) µ(x) = ß0+ß1x à de linkfunctie is de functie die ales afbeeld op zichzelf (= identiteitslink)

Logiostische regressie
1) Y½p ~ B(p(x)) à y volgt een binomiale verdeling gegeven covariaat x met gemiddelde p(x)
2) h(x)= ß0+ß1x à systematische component
p
3) Logit(p(x))= ln ! " = ß0+ß1x à logit functie om 1) en 2) aan elkaar te linken
!" p
à we kunnen het model ook herschrijven in functie van p(x) met de expit maar is dus exact hetzelfde model

Poisson regressie
1) Y½ x ~ Pois(λ (x)) à y volgt een poisson verdeling gegeven covariaat x met gemiddelde λ(x)
2) h(x)= ß0+ß1x à systematische component
3) Log(λ(x))= ß0+ß1x à log functie om 1) en 2) aan elkaar te linken




3

, LINAIRE REGRESSIE

WAT IS LINAIRE REGRESSIE?


INTERNET

Lineaire regressie is een statistische techniek die wordt gebruikt om de relatie tussen twee variabelen te modelleren,
waarbij wordt aangenomen dat deze relatie lineair is.

à Het doel van lineaire regressie is om een lineaire relatie te vinden tussen een afhankelijke variabele (ook wel
responsvariabele of uitkomstvariabele genoemd) en één of meerdere onafhankelijke variabelen (ook wel
voorspellende of verklarende variabelen genoemd).

De meest voorkomende vorm van lineaire regressie is eenvoudige lineaire regressie, waarbij slechts één
onafhankelijke variabele wordt gebruikt om de relatie met de afhankelijke variabele te modelleren. De wiskundige
uitdrukking voor een eenvoudige lineaire regressie kan worden geschreven als:

y=a+βx+εi


• y is de afhankelijke variabele.
• x is de onafhankelijke variabele.
• a is de intercept, het punt waarop de regressielijn de y-as snijdt als xx gelijk is aan nul.
• β is de helling van de regressielijn, wat aangeeft hoeveel yy verandert voor elke verandering van één
eenheid in xx.
• εi vertegenwoordigt de foutterm, de onverklaarde variantie die niet door de regressie wordt gemodelleerd.


Het doel van lineaire regressie is om de beste schattingen te vinden voor de parameters a en β die de relatie tussen
xx en yy het best beschrijven, door de foutterm ε te minimaliseren. Deze schattingen worden meestal berekend met
behulp van methoden zoals de methode van de kleinste kwadraten


WANNEER GEBRUIKEN WE LINEAIRE REGRESSIE

Y= uitkomstvariabele
X= covariaat
Bv wat is het verschil in bloeddruk tussen mannen en vrouwen?
à Bloeddruk is de uitkomstvariable en geslacht het covariaat

Bij alle statistische tests die we hier voor hebben gezien was x steeds categorisch (geneesmiddel wel gekregen of
niet gekregen, training wel gedaan of niet gedaan,…)
à maar als x nummeriek is (continu of discreet) dan hebebn we regressiemoddelen nodig

VERSCHILLENDE REGRESSIEMODELLEN

X (covariaat) Y (uitkomstvariabele) Regressie-analyse
Numeriek: Continu Lineaire regressie
continu of Binair Veralgemeende lineaire regressie: logistische regressie
categorisch Discreet Veralgemeende lineaire regressie: piosson regressie
Continu (overleidingstijd) Cox regeressie




4
€15,39
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
ranicallaerts
5,0
(1)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
10 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
ranicallaerts Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
6
Lid sinds
1 jaar
Aantal volgers
1
Documenten
9
Laatst verkocht
3 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen