100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

HPS 420 Final Exam With Complete Solutions

Rating
-
Sold
-
Pages
35
Grade
A+
Uploaded on
04-04-2025
Written in
2024/2025

HPS 420 Final Exam With Complete Solutions ...

Institution
HPS 420
Module
HPS 420











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
HPS 420
Module
HPS 420

Document information

Uploaded on
April 4, 2025
Number of pages
35
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

HPS 420 Final Exam With Complete
Solutions

Direct ionization vs. Indirect ionization (1) - ANSWER direct: All charged particles that
directly disrupt atomic structures of any material through which they pass causing
chemical or biologic effects.

indirect: Does not directly produce damage themselves; it produces fast-moving
particles when they interact with material. Secondary particles then go on to cause
biologic damage (e- to move out)

Direct ionization is associated with?

Indirect action is associated with? (1) - ANSWER direct: Particulate Radiation (alpha
particles, electrons, protons, heavy charged particles)

indirect: Electromagnetic Radiation (X- and Y-Ray)

(Neutrons also use INDIRECT IONIZATION)

Direct vs. Indirect action (1) - ANSWER Direct: the atoms of the target itself may be
ionized or excited thus the initializing the chain of events that leads to a biological
change. dominant for densely ionizing radiation (=high LET radiation = alpha particles or
neutrons or protons)

Indirect: When H20 or other molecules are ionized. These free radicals act as
intermediaries to cause damage. Secondary electron interacts with a water molecule to
produce (OH-) which causes damage to DNA; occurs with Electromagnetic radiation

How do X-rays and neutrons differ? (1) - ANSWER X-rays interact with electrons of an
atom, while neutrons interact with the nuclei of an atom. This results in recoil protons
and is associated with Spallation

Photoelectric effect: what is it and what energy range they dominate (ch 1) - ANSWER
the photon is absorbed, knocks out an electron in the K shell of the atom (inner shell)

1-10 keV low

photo energies completely absorbed knocks out electron

compton scattering: what is it and what energy range they dominate (ch 1) - ANSWER
Interaction of an x-ray photon with a loosely bound outer shell electron of an atom

- some incident photon energy is transferred to the electron (minus binding energy of

,the electron

- scattered photon continues with less energy in a different direction

- over all energies, peaking midrange at 10 KeV - 10MeV

Pair production: what is it and what energy range they dominate (ch 1) - ANSWER The
incident photon spontaneously converts into an electron and a positron which then
deposit any remaining energy in the medium through Coulomb interactions

- only occur is E > 1.022 MeV

- not seen in diagnostic imaging

excitation vs. ionization (ch 1) - ANSWER excitation: Raising of an electron in an atom or
molecule to a higher energy level without actual ejection of the electron. transfers
enough energy to an orbital electron to displace it further away from the nucleus.

ionization: The electron is ejected resulting in an ion pairone freed electionand the
remaining atom

Understand the wave model and how wavelength, frequency and velocity are related (ch
1) - ANSWER wave model: electromagnetic radiation is a self propagating wave with
electric and magnetic components ( perpendicular)

- wavelength x frequency = velocityV×f=c

Particle model: describes electromagnetic radiation os thought of as a stream of
separate particles or photons

- energy = planks constant x frequencyE=h×v

Know the two major DSB repair pathways and how they differ. (ch 2) - ANSWER 1.
Homologous recombination repair (HRR)

- uses a template to repair the damage done to the genome

- most faithful

- only during S phase and G2 phase

2. Nonhomologous end joining (NHEJ)

- prevents cell from continuing the cell cycle until fully repaired, joining the end free
ends of the strand

- no template, no dna copy

- least faithful

- All cell cycles predominate in G1

,Understand the various types of aberrations and how irradiation in a particular cell
cycle may lead to particular types of aberrations (ch 2) - ANSWER 1. Chromatid
aberration: Occurs after irradiation in S or G2 where only one chromatid is involved

2. Chromasome aberration: G1 irradiation where both sister chromatids are involved

what are the three types of lethal aberrations - ANSWER Dicentric, Ring, and anaphase
bridge

how are dicentric aberrations formed - ANSWER irradiation in G1 with two breaks in the
chromatid, the formed ring of the centric ring that has now duplicated

chromosomal, lethal, asymmetrical

how are ring aberrations formed - ANSWER radiation in G1 where two breaks have
occurred, the chromatid closes on itself and forms a ring while two fragments have
broken off chromosomal, lethal, asymmetrical

how are fragment aberrations formed - ANSWER radiation in G1 with two breaks that
occurred, a result from ring or interstitial deletion where parts of the DNA are parted out
and either fade away or attempt to form smaller rings or small chromosomes

Know the difference between symmetrical and asymmetrical aberrations (ch 2) -
ANSWER symmetrical: balanced gene rearrangements

no cell death

both have centromeres

transportation abberation

stable

asymmetrical:

not balanced gen rearrangements where fragment is usually lost

death or loss of DNA

has 1 or no centromere

dicentric and fragment abberations

unstable

Know what mathematical function chromosome aberrations follow at low and high
doses (ch 2) - ANSWER

what are the different staining methods used for detecting chromosome aberrations (ch
2) - ANSWER 1. Giemsa staining

, 2. G-banding

3. Fluorescence in situ hybridization (FISH)

4. MFISH

5. MBAND

Giesma stain - ANSWER a stain that binds to adenine-thymine to visualize
chromosomes.

Good for visualizing dicentrics, rings, and fragments.

What is G-banding - ANSWER stain with giemsa and add trypsin solution to "eat" away
areas causing a defined banding pattern- good for seeing deletions in chromosomes



What is flourescence in-situ hybridization (FISH) - ANSWER fluorescent probes that bind
to specific chromosomes usually 1-3 at a time



What is MFISH - ANSWER a more indepth version of FISH that allows each chromosome
to be "painted" with a specific color



What is MBAND - ANSWER allows for a single chromosome to be "painted" with bands
for specific segments of the chromosome



Understand what the plating efficiency is and why it is needed (ch 3) - ANSWER the
capability of a single cell to grow into a large colony



PE: (number of colonies/ number of cells plated) x 100

SF: number of colonies/ number of cells plated x (PE/100)



Know the components of the linear quadratic model (ch 3)

- α/β ratio and its significance

- what type of damage do the α and β components represent - ANSWER it is the dose at
which linear and quadratic components of cell killing are equal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Evergreenview Harvard University
Follow You need to be logged in order to follow users or courses
Sold
10
Member since
1 year
Number of followers
1
Documents
2444
Last sold
2 weeks ago

4.8

5 reviews

5
4
4
1
3
0
2
0
1
0

Trending documents

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions