100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Absolute Value solved questions

Rating
-
Sold
-
Pages
4
Grade
A+
Uploaded on
18-07-2022
Written in
2021/2022

Absolute Value solved questions

Institution
Maths
Module
Maths








Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
July 18, 2022
Number of pages
4
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

CHAPTER 2
Absolute Value

2.1 Solve |* + 3|<5.
\x + 3\<5 if and only if -5<x + 3s5.
Answer -8 s jc < 2 [Subtract 3.] In interval notation, the solution is the set [—8, 2].

2.2 Solve |3jt + 2|<l.
|3* + 2|<1 if and only if -1<3* + 2<1, -3<3*<-l [Subtract 2.]
Answer -1< x < - 5 [Divide by 3.] In interval notation, the solution is the set (-1, - 3).

2.3 Solve |5-3*|<2.

|5-3x|<2 if and only if -2<5-3x<2, -7<-3x<-3 [Subtracts.]
Answer | > x > 1 [Divide by —3 and reverse the inequalities.] In interval notation, the solution is the set
(i,3).
2.4 Solve |3*-2|s=l.
Let us solve the negation of the given relation: |3* — 2|<1. This is equivalent to — l<3x — 2<1,
1<3*<3 [Add 2.], ^ < x < l [Divide by 3.]
The points not satisfying this condition correspond to AT such that x < 3 or x>\. Answer

2.5 Solve |3 - x\ = x - 3.
|M| = — u when and only when w^O. So, \3>-x\ = x—3 when and only when 3 — *:£0; that is,
3 s x. Answer

2.6 Solve |3 - *| = 3 - x.
\u\ = u when and only when j/>0. So, |3-*|=3 — x when and only when 3-*>(); that is,
3 s x. Answer

2.7 Solve \2x + 3| = 4.
If c>0, \u\ = c if and only if w = ±c. So, \2x + 3| = 4 when and only when 2^: + 3=±4. There
are two cases: Case 1. 2*+ 3 = 4. 2x = 1, x = | . Case 2. 2 A t + 3 = - 4 . 2x = -7, ac = -|.
So, either x = | or x = — j. AnswerSo, either x = | or x = — j. Answer

2.8 Solve |7-5*| = 1.

|7-5*| = |5*-7|. So, there are two cases: Casel. 5x-7 = l. 5* = 8, *=f. Case 2. 5*-7=-l.
5x = 6, AC = f .
So, either * = | or *=|. Answer

2.9 Solve U/2 + 3|<l.
This inequality is equivalent to -l<jc/2 + 3<l, -4<x/2<-2 [Subtracts.], -8<x<-4 [Multi-
ply by 2.] Answer

2.10 Solve |l/*-2|<4.
This inequality is equivalent to —4<1/* — 2<4, -2<l/*<6 [Add 2.] When we multiply by x, there
are two cases: Casel. *>0. -2*<1<6*, x>-\ and g < * , \<x. Case 2. *<0. -2x>\>
6x, x<—\ and !>*, x< — \.
So, either x<— \ or \<x. Answer

5
£4.31
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jureloqoo

Also available in package deal

Thumbnail
Package deal
3k solved calculus questions
-
46 2022
£ 260.63 More info

Get to know the seller

Seller avatar
jureloqoo METU
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
46
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions