me
Engineering Mathematics me
2C
SEQUENCES & SERIES MATRICES & VECTORS f ,
cos
-
'
(Yy )
TO
Algebraic equations Ax =D
Linear
•
)
A¥r^
:
T
Sn
Effort ( 1) d) Linear Ordinary Differential Equations
=
•
:
Sn = n -
Acct)
Geometric series
day =
Arithmetic series a
•
Non Linear -
ODE 's : ITF =
ACK ) >act)
in Common Ratio
common
Difference Linear
Algebra
•
•
Example 1. Divide
A matrix
symmetric if it is equal
is - to its transpose .
2k2t3k-1_ by highest Skew
symmetric matrix if equal
its to its
transpose
• (k ) =
power g-
he negative .
7-k 't -4kt 2
Look
Every
2 at how he → N
square matrix A car be written
.
a Btc
2€72
-
-
x (k ) =
⇒ lim
-
-
If ⇒
converges as the sum
of asymmetric
B -
-
ELATA) Qlx ) -
x'Ax
7- +
I + I 9- C- ECA A
'
)
limg
-
B
=
matrix and skew matrix C
w
g
-
r
symmetric .
Infinite Arithmetic series win
always be
divergent Quadratics Cross
.
product
Any quadratic function be
•
can
- represented
for Convergence /Divergence
•
Tests
Q (x, .kz/=d..x2tdzzx2td.zxpcz as the sum
9-
:
Comparison test A series terms is
•
(dye d)(⇒
of positive Qcx ,xz ) Gc )
:
convergent xz d. ,
dig flat x'Act b'xtc
- -
-
-
, ,
if the value of
each
of its terms is less than
equal &
Lifdggvm
or "
↳
constant
the
corresponding terms
of another series of positive qufaordmatic
terms is
convergent .
①(" '' K2, " 3) =D" 392 + d22%22+133×32 +
dizcpcztdizk xztdzz >
czx,
A series
,
terms is
of positive divergent
if the value of
each
of its
greater than
terms is -
÷
co
equal "" "" " " "" Example
or
" " " d. 3
A- Btc
in:
-
snagging
eem.a-momeiesorros.me
Lima (AIT) CI
-
convergence
.
ai;D in?
Ratio
-
°
test : positive terms
hirsuta; sirirogona Symmetric :B ICAN 't { {I's ⇒ feed} f g) =L's:L)
-
= -
+ -
- ,
/AYLOR SERIES
Linear dependence
-
:
"
Cnbc ) wi
'
wi flew
flu) 1. Set Co f Ca)
is
independent
= a
of
(
-
gives
-
WII ! 5263¥
sea ,
7)
-
o , z z
wi -2W, 't wi
2-
Differentiate
⇒ Wsis linearly
'
gives a
Czfx apt
wrt
Cot C. ( a) ,
x
flat
=
-
- x -
+ - . . .
y s s
Wi & wz
'
( 47 ) dependent on
Iz f Wj
4 7 13
(z (a) B
"
- 10 = to
"
4=24f- G)
-
(
d÷⇒=
'
x a)
C. +24 (x a) +3 ↳ ( Maximum
t
=tff' linearly independent
number vectors in matrix
-
''
( )
-
a
- - -
↳ of
-
a
the number in its
is
equal to
of
non zero rows row echelon form
'T Fla)
- -
.
Cri
⇒ C, f' (a) ⇒
fact Ii Fca )Gc at
-
"
fi) 'm .&aij8i
- -
Determinant 8
- -
.
=
-
; ;
-
,
Inverse Matrices Pseudo Inverse non
square
Example of
a
-
• -
MACLAURIN SERIES fcxj-s.mx
•
matrix
G) adj
'
A-
fhcy.sn?Eont..fnCohcn
I Write out derivatives
= CA ) Given matrix A. matrix B
general Mxn
specify a
.
.
( )
"
sink
fix ) f
x =
that makes
-
sin >c
-
AB Im
:
-
BA In
- -
-
or
-
""
'
(" ' f COS"
Starling point (number of rows lessthan
=
f- cos"
-
'
is
always zero • When men number
of columns ) ⇒
right
is
2 put pseudo inverse of size nxm
defined as :
Art A'(AA )
-
equation
i
AArt=Im
-
.
into ⇒
=
. x=a
"
Maclaurin ) and k
for fck Taylor about When (number grows than columns) ⇒
-
x •
-
m >n
greater left pseudo
Taylor Maclaurin '
inverse size
of nxm is
defined
- -
as
Act (A'A)
'
= A ⇒
AEA In
Maclaurin :
f-( 2)
"
flat O '
I
-
=
f' x'
'
-
Example
'
fix , fcoytf Cola
361A
= t
f'(a)
+ - --
2nA -2×3 FAA )
"
f (a)
A
Right Art
'
⇒ A'
'
o
,
pseudo
2g
man ⇒
-
=
't
=
't
=
Is, ¥ , :X
sink -
- Ot k to -
. . - t
f (a)
''
la )
'' ,
O = ,
f
- -
-
1. Calculate transverse
f- Cal
'''
f. (a)
a.at?I .int
' '' '
= -
I
-
-
O 2- Calculate Inverse
fan ,
.
.
II
"
D-
"" '
Taylor caner .
ajaacaa 's
⇐ ?" "
"
's
feet sine 1 +
3. Do Pseudo Inverse
-
= -
¥1
. -
.
-3¥
6 !
det "" II
a
" = ,
" ⇒ -
E in -
'
n a'can 't
'
÷:
-
.
Engineering Mathematics me
2C
SEQUENCES & SERIES MATRICES & VECTORS f ,
cos
-
'
(Yy )
TO
Algebraic equations Ax =D
Linear
•
)
A¥r^
:
T
Sn
Effort ( 1) d) Linear Ordinary Differential Equations
=
•
:
Sn = n -
Acct)
Geometric series
day =
Arithmetic series a
•
Non Linear -
ODE 's : ITF =
ACK ) >act)
in Common Ratio
common
Difference Linear
Algebra
•
•
Example 1. Divide
A matrix
symmetric if it is equal
is - to its transpose .
2k2t3k-1_ by highest Skew
symmetric matrix if equal
its to its
transpose
• (k ) =
power g-
he negative .
7-k 't -4kt 2
Look
Every
2 at how he → N
square matrix A car be written
.
a Btc
2€72
-
-
x (k ) =
⇒ lim
-
-
If ⇒
converges as the sum
of asymmetric
B -
-
ELATA) Qlx ) -
x'Ax
7- +
I + I 9- C- ECA A
'
)
limg
-
B
=
matrix and skew matrix C
w
g
-
r
symmetric .
Infinite Arithmetic series win
always be
divergent Quadratics Cross
.
product
Any quadratic function be
•
can
- represented
for Convergence /Divergence
•
Tests
Q (x, .kz/=d..x2tdzzx2td.zxpcz as the sum
9-
:
Comparison test A series terms is
•
(dye d)(⇒
of positive Qcx ,xz ) Gc )
:
convergent xz d. ,
dig flat x'Act b'xtc
- -
-
-
, ,
if the value of
each
of its terms is less than
equal &
Lifdggvm
or "
↳
constant
the
corresponding terms
of another series of positive qufaordmatic
terms is
convergent .
①(" '' K2, " 3) =D" 392 + d22%22+133×32 +
dizcpcztdizk xztdzz >
czx,
A series
,
terms is
of positive divergent
if the value of
each
of its
greater than
terms is -
÷
co
equal "" "" " " "" Example
or
" " " d. 3
A- Btc
in:
-
snagging
eem.a-momeiesorros.me
Lima (AIT) CI
-
convergence
.
ai;D in?
Ratio
-
°
test : positive terms
hirsuta; sirirogona Symmetric :B ICAN 't { {I's ⇒ feed} f g) =L's:L)
-
= -
+ -
- ,
/AYLOR SERIES
Linear dependence
-
:
"
Cnbc ) wi
'
wi flew
flu) 1. Set Co f Ca)
is
independent
= a
of
(
-
gives
-
WII ! 5263¥
sea ,
7)
-
o , z z
wi -2W, 't wi
2-
Differentiate
⇒ Wsis linearly
'
gives a
Czfx apt
wrt
Cot C. ( a) ,
x
flat
=
-
- x -
+ - . . .
y s s
Wi & wz
'
( 47 ) dependent on
Iz f Wj
4 7 13
(z (a) B
"
- 10 = to
"
4=24f- G)
-
(
d÷⇒=
'
x a)
C. +24 (x a) +3 ↳ ( Maximum
t
=tff' linearly independent
number vectors in matrix
-
''
( )
-
a
- - -
↳ of
-
a
the number in its
is
equal to
of
non zero rows row echelon form
'T Fla)
- -
.
Cri
⇒ C, f' (a) ⇒
fact Ii Fca )Gc at
-
"
fi) 'm .&aij8i
- -
Determinant 8
- -
.
=
-
; ;
-
,
Inverse Matrices Pseudo Inverse non
square
Example of
a
-
• -
MACLAURIN SERIES fcxj-s.mx
•
matrix
G) adj
'
A-
fhcy.sn?Eont..fnCohcn
I Write out derivatives
= CA ) Given matrix A. matrix B
general Mxn
specify a
.
.
( )
"
sink
fix ) f
x =
that makes
-
sin >c
-
AB Im
:
-
BA In
- -
-
or
-
""
'
(" ' f COS"
Starling point (number of rows lessthan
=
f- cos"
-
'
is
always zero • When men number
of columns ) ⇒
right
is
2 put pseudo inverse of size nxm
defined as :
Art A'(AA )
-
equation
i
AArt=Im
-
.
into ⇒
=
. x=a
"
Maclaurin ) and k
for fck Taylor about When (number grows than columns) ⇒
-
x •
-
m >n
greater left pseudo
Taylor Maclaurin '
inverse size
of nxm is
defined
- -
as
Act (A'A)
'
= A ⇒
AEA In
Maclaurin :
f-( 2)
"
flat O '
I
-
=
f' x'
'
-
Example
'
fix , fcoytf Cola
361A
= t
f'(a)
+ - --
2nA -2×3 FAA )
"
f (a)
A
Right Art
'
⇒ A'
'
o
,
pseudo
2g
man ⇒
-
=
't
=
't
=
Is, ¥ , :X
sink -
- Ot k to -
. . - t
f (a)
''
la )
'' ,
O = ,
f
- -
-
1. Calculate transverse
f- Cal
'''
f. (a)
a.at?I .int
' '' '
= -
I
-
-
O 2- Calculate Inverse
fan ,
.
.
II
"
D-
"" '
Taylor caner .
ajaacaa 's
⇐ ?" "
"
's
feet sine 1 +
3. Do Pseudo Inverse
-
= -
¥1
. -
.
-3¥
6 !
det "" II
a
" = ,
" ⇒ -
E in -
'
n a'can 't
'
÷:
-
.