100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Zusammenfassung Mathe Funktionstypen Übersicht

Bewertung
-
Verkauft
-
seiten
13
Hochgeladen auf
30-11-2024
geschrieben in
2024/2025

die bekannten Funktionstypen wie Lineare, ganzrationale, exponential, sinus - Funktionen werden hier verglichen und ihre -Merkmale aufgezählt besonders wird zudem auf stetigkeit und Limes eingegangen. Es handelt sich um Notizen für eine schulaufgaben im Fach Mathematik sinus ,cos.

Mehr anzeigen Weniger lesen









Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Mittelschule
Studium
Gymnasium
Schuljahr
2

Dokument Information

Hochgeladen auf
30. november 2024
Anzahl der Seiten
13
geschrieben in
2024/2025
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Lineare Quadratische Exponential Ganzrationale Gebrochen- Trigonometrische Funktionen
Funktionen
Funktionsty
-funktion Funktion (Polynom) rationale
Name Funktionen
pen Funktionen
Term f(x)= m ꞏ x + t f(x)= ax² + bx + c f(x)= b ꞏ aˣ + f(x)= aₙ ꞏ xⁿ-1 +...+ a f(x)= a ꞏ sin (b f(x)= a ꞏ cos (b
f(x)= + (x+c)) + d
c a₀ x−c (x+c)) + d
d
Graph Gerade Parabel Hyperbel Sinusfunkt. Kosinusfunkt.
Maximale Df ℝ ℝ ℝ (ℝ) ℝ \ {b} ℝ
Wertemenge (R) (R) (R+) ( [-a; a])
Wf
Eine für m ǂ 0 Mit D → Anzahl keine max. Anzahl: Grad evtl. xk = k ꞏ π xk= 0,5 ꞏ π + k ꞏ
Nullstellen unendl. viele MNF: x 1/2= π
(mit k ϵ ℝ)
bei f(x)= 0 −b ± √ b 2−4 ac (mit k ϵ ℝ)
2a
Symmetrie (keine) (Normalparabel: keine möglich (möglich) punktsym. z. achsensym. z.
achsensym. z y-A) Ursprung y-Achse
Extrempunkte keine Scheitelpunkt keine evtl. Evtl. unendlich

Asymptoten keine (keine) ja ja
∆y Diskriminante D Logarithmus: Höchste Potenz: Grad a = Amplitude
m= D = b2 – 4ac Log ab=x
∆x
D < 0 → keine ax=b Periode p = 2 π (bei norm F)
D = 0 → eine
(=Ganzrationalf D > 0 → zwei 2π 2π
. mit Grad: 1) b= /p=
p b
Scheitelpunktsform:
f(x)= a (x+d)2 + e
-) S(-d/e)

Normalparabel: y= x2
Monotonie a > 0 l.o nach r.o a > 1 -)
verhalten a < 0 l.u nach r.u streng m.
steigend
0<a<1
-) streng m

, fallend
Grenzwerte


Graphen


Allgemeine Grundsätze/Formeln:


Nullstellen: f(X)= 0 (ebenso Schnittpunkt mit x-Achse)
SP mit y-Achse: f(0) berechnen
Einfluss Parameter auf den Graphen der Funktion
Symmetrie: f(-x) vereinfachen
f(x)= a ꞏ f (b (x – c)) + d [sin/cos, Parabel, ganzrat.F,
-) f(-x)= f(x) Achsensymmetrisch zur y-Achse
Exponentialf.]
f(-x)= - f(x) punktsymmetrisch zum Koordinatenursprung
1
b → Streckung mit dem Faktor │b │ in x-Richtung
Parameter:

Reihenfolge beim Untersuchen: b – c – a – d ! c → Verschiebung um │c│ in x-Richtung

c > 0 in pos. Richtung (rechts); c < 0 in negative R. (links)

a → Streckung mit dem Faktor │a│in y-Richtung

a < 0 : Graph wird zusätzl. an x-Achse gespiegelt

d → Verschiebung um │d│ in y-Richtung

d > 0 : nach oben (pos. y-R) d < 0 : nach unten (neg. y-R)
6,49 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
evchendiefrische

Lerne den Verkäufer kennen

Seller avatar
evchendiefrische
Profil betrachten
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
0
Mitglied seit
1 Jahren
Anzahl der Follower
0
Dokumente
1
Zuletzt verkauft
-

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen