100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Systems Optimisation Summary 2024

Beoordeling
-
Verkocht
-
Pagina's
9
Geüpload op
29-09-2025
Geschreven in
2024/2025

EN: Systems Optimisation (4603BSSOX) is a course taught at Leiden University. It is an elective that is recommended for Master ICT in Business students. It is given in the second semester and applies linear programming to business problems. NL: Systems Optimisation (4603BSSOX) is een vak gegeven aan universiteit Leiden. Het is een keuzevak die wordt aanbevolen aan Master ICT in Business studenten. Het wordt in het tweede semester gegeven en past linear programmeren toe aan bedrijfsproblemen.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
29 september 2025
Aantal pagina's
9
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

Systems Optimization – Summary
February 2025, by Isabel Rutten

Content
Unit 1: Introduction to Decision Modeling & Linear Programming .......................................... 2
Unit 2: Sensitivity Analysis .................................................................................................... 3
Unit 3: Sensitivity Analysis (continued) & Binary Models ....................................................... 3
Unit 4: Sales & Marketing Applications .................................................................................. 4
Unit 5: Investment Portfolio Optimization............................................................................... 4
Unit 6: Investment Portfolio Optimization II............................................................................ 5
Examples .............................................................................................................................. 6
Printers (Unit 1) ................................................................................................................. 6
Brewery (Unit 1) ................................................................................................................ 6
TropiCo (Unit 1) ................................................................................................................. 6
ClosetCo (Unit 2) ............................................................................................................... 6
NordiCo (Unit 3) ................................................................................................................ 7
Influencers (Unit 3) ............................................................................................................ 7
Repsoil (Unit 3).................................................................................................................. 7
Cotton Market (Unit 4) ....................................................................................................... 8
Digital Marketing (Unit 4) ................................................................................................... 8
Invest (Unit 5) .................................................................................................................... 8
Vintage stocks (Unit 6) ...................................................................................................... 9
Excel ................................................................................................................................. 9




1
Systems Optimization – Summary. February 2025, by Isabel Rutten.

, Unit 1: Introduction to Decision Modeling & Linear
Programming
Decision-making model: structured process which can be used to guide managers to make
decisions. Developed in an iterative manner, through a four-step cycle:
1. Formulate: Develop a formal (mathematical) model of the given (real-world) decision.
2. Evaluate: Apply the decision model and produce a formal recommendation.
3. Interpret: Examine (computer) outcomes and determine a clear course of action.
4. Refine: Test possible decision model changes and find ways to improve the model.
If more analysis is needed, start again from step 1. Else, implement the decision.
Linear programming: mathematical modeling technique in which a linear objective function
is maximized or minimized when subjected to various constraints (represented by linear
equations or inequalities), used for quantitative decisions, aim to find optimum. Components:
- Decision variables: unknown quantities, we want to optimize this.
- Objective function: goal of decision-maker, two types: maximization or minimization
- Constraints: limitations on possible solutions of the problem (e.g. availability of
scarce resources). RHS (Right-Hand Side) is number located on RHS of constraint.
- Non-negativity conditions: special constraints which require all variables to be
either zero or positive
Assumptions of linear programming:
- Proportionality: the contribution of any decision variable to the objective function is
proportional to its value
- Additivity: e.g. total profit of objective function is determined by the sum of profit
contributed by each product separately
- Continuity: the decision variables are continuous (i.e. fractions are allowed)
- Certainty: all constant terms, objective function and constraints are known and will
not change
 i.e. objective function and constraints must be linear w.r.t. decision variables.
Linear function: a function whose graph is a straight line and which is represented
by an equation of the form 𝑦 = 𝑎𝑥 + 𝑏.
 Allowable variations: constraints can be ≤, ≥, or =; non-integer or integer coefficients
are allowed; negative or positive coefficients are allowed.
Graphical approach of linear programming (only if 2 dec vars):
1. Plot each of the constraints.
2. Determine the feasible region (satisfy all constraints).
3. Draw the objective function.
4. Determine the optimal solution.
Special cases of graphical approach:
- No feasible solutions: to satisfy one of the constraints, another must be violated
- Unbounded: value of the objective function can be increased without limit
- Redundant constraint: a constraint that does not form a unique boundary of the
feasible solution space, its removal would not alter the feasible solution space
- Multiple optimal solutions: different combinations of values of the decision
variables yield the same optimal value


2
Systems Optimization – Summary. February 2025, by Isabel Rutten.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
IsabelRutten Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
97
Lid sinds
5 jaar
Aantal volgers
66
Documenten
21
Laatst verkocht
2 weken geleden
Summaries for Computer Science, Industrial Engineering, and ICT in Business

If you have any questions about the summaries or other study-related topics, you can always send me a message on this platform. For a cheaper price, you can also message me privately: I only receive 40% of the price you pay on this platform. I hope that these summaries help you advance your studies!

4,4

12 beoordelingen

5
9
4
1
3
1
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen