100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Machine Learning for Business Analytics Summary 2024

Beoordeling
-
Verkocht
-
Pagina's
12
Geüpload op
29-09-2025
Geschreven in
2024/2025

EN: Machine Learning for Business Analytics (4343BSMLB) is a course taught at Leiden University. It is an elective that is recommended for Master ICT in Business students. It is given in the first semester and applies AI on business applications. NL: Machine Learning for Business Analytics (4343BSMLB) is een vak gegeven aan universiteit Leiden. Het is een keuzevak die wordt aanbevolen aan Master ICT in Business studenten. Het wordt in het eerste semester gegeven en past AI toe aan bedrijfsapplicaties.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
29 september 2025
Aantal pagina's
12
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

Machine Learning for Business Analytics -
Summary 2024
Written by Isabel Rutten (November 2024, Leiden University)

Competing on Analytics – Davenport
Analytics competitor: company that uses sophisticated data-collection technology and
analysis to get value from all your business processes. To become one:
- Change to an analytics-focused company, by supporting changes in culture,
processes, and skills
- Place all data-collection and analysis activities under a common leadership, with
common technologies and tools to facilitate data-sharing
- Focus on analytics initiatives that most directly serve your overarching competitive
strategy
- Establish analytics culture i.e. respect for measuring, testing and evaluating
quantitative evidence
- Hire analysts with top-notch quantitative analysis skills and its communication
- Use the right technology, such as CRM or ERP

Lecture 1 – Business Understanding
Business analytics: use analytical modeling and numerical analysis, including explanatory
and predictive modeling, and fact-based management to drive decision-making.
Features: task (provide decision support for specific defined goals), foundation (relies on
empirical information), realization (as a system using actual info and communication
capabilities), delivery (at the right time to the right people in an appropriate form).
Examples are in manufacturing (frequency errors), marketing and sales (most profitable
customer segments), professional services (will business progress result in objectives)
Data science: inter-disciplinary field that uses scientific methods, processes, algorithms and
systems to extract knowledge from structural and unstructured data.
Machine learning: set of methods which learn through data a specific task, closely linked to
statistics and optimization; algorithms whose performance improve as they are exposed to
more data over time. Methods include linear regression, decision trees, neural networks, k-
means clustering. ML is relevant because it can handle millions of parameters.
Nowadays: pre-trained models are available, the cloud offers unlimited computation power,
no coding is required, more data is collected than ever through digitalization and automation.
When to use: problem related to data, too complex for coding, constantly changing,
perceptive problem, unstudied phenomenon, simple objective. When not: needs complete
explanation, high cost of error, hard to get right data, operational environment cannot handle
Drivers of cost: complexity, data, accuracy (cost of wrong prediction). Lessons: know
unknowns like quality, quantity, relevant features, model size, etc.; progress on model error
is first fast and later slows down; simplify problem first and solve subproblems
Artificial intelligence: A program that can sense, reason, act, and adapt; broad definition of
intelligence displayed by machines, various subfields with specific tasks e.g. reasoning,
knowledge representation, planning, learning.


1
Isabel Rutten. Machine Learning for Business Analytics. Leiden University. November 2024.

, Neural networks: subset of machine learning based on connected neurons approximated
by simple functions; capable of dealing with complex ML tasks while in the need of a large
amount of data. Examples: computer vision, natural language processing.
Data science pyramid of needs: from bottom to top: collect (e.g. logging) move/store (e.g.
pipelines), explore/transform (e.g. cleaning), aggregate/label (e.g. analytics), learn/optimize
(e.g. A/B testing), AI/Deep learning.
Linear regression: for task of finding a linear relationship between x and y observations,
allowing for predictions on unseen inputs for future outputs. Data is data set of
measurements including in- and output. During training the parameter of the model is search
such that it has the lowest error. During testing, trained model with fixed parameters is
evaluated with representative unseen data to estimate its performance. During deployment,
model with fixed parameters is run in final software.
ML template: projects fail due to a misunderstanding of objectives between business and
analyst, so use a ML template to structure the idea of the project, document the approach for
all participants and provide a starting point for the data scientists. The template includes:
task (business problem from perspective of business), data (data used to solve task),
method (high-level ML approach from data scientist perspective), evaluation (how solution to
task is evaluated and success definition), hypothesis (which use data and method to be
accepted or rejected; each describes how to achieve a goal states in task, each should focus
on single improvement, start simple, need acceptance criteria e.g. Using [data] with [method]
we will ensure [evaluation] to be [value]). See figure 1 for an example.
Typology of tasks/goals: descriptive (summary description e.g. reporting, segmentation,
detect interesting behavior), predictive (predict behavior of instances in business processes
e.g. regression, classification), understanding (support stakeholders in understanding
business processes e.g. process identification, analysis).
Machine learning lifecycles: iterative steps taken to build, deliver and maintain any data-
driven product. Different versions exist and can be adapted to team size, analytics
task/project scope, organization, existing pipelines and tools. Examples:
- KDD (Knowledge Discovery in Databases)
- SEMMA (Sample, Explore, Modify, Model, Assess)
- OSEMN (Obtain, Scrub, Explore, Model, iNterpret)
- TSDP (Team Data Science Process)
- CRISP-DM (Cross-Industry Standard Process for Data Mining): 6 major phases with
back-and-forth movement, arrows show most frequent ways. See figure 2.
- AI Engineering: Model life cycle with emphasis on the model. See figure 3.
Business Intelligence (BI) tools: See figure 4 for the BI tools pyramid.

Advantages Disadvantages
SPSS Good UI, easy to start High costs, licenses system
Python Scalability, big community Not strong in explanatory analysis,
need programming skills
R Free, big community for empirical Can be slow, steep learning curve
methods
LLM Create code and pictures, automated Higher competitiveness, unique
content creation
Colab Work on data from browser without -
need of installations


2
Isabel Rutten. Machine Learning for Business Analytics. Leiden University. November 2024.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
IsabelRutten Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
97
Lid sinds
5 jaar
Aantal volgers
66
Documenten
21
Laatst verkocht
2 weken geleden
Summaries for Computer Science, Industrial Engineering, and ICT in Business

If you have any questions about the summaries or other study-related topics, you can always send me a message on this platform. For a cheaper price, you can also message me privately: I only receive 40% of the price you pay on this platform. I hope that these summaries help you advance your studies!

4,4

12 beoordelingen

5
9
4
1
3
1
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen