100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Modelling Computing Systems Hoofdstuk 5 Faron Moller & Georg Struth

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
07-12-2020
Geschreven in
2020/2021

Logic for Computer Science / Logica voor computertechnolgie hoofdstuk 5. Samenvatting van het boek Modelling Computing Systems geschreven door Faron Moller en Georg Struth. Samenvatting geschreven in het Engels. Aan de hand van voorbeelden en plaatjes wordt de stof en theorie verduidelijkt. Gegeven op Universiteit Utrecht.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 5
Geüpload op
7 december 2020
Aantal pagina's
7
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Hoofdstuk 5:

A proof of a (true) statement is a demonstration of its validity which contains sufficient detail to
convince someone that the statement is true. Statements which are provable are called theorems.

Recap:

- syntax describes what terms are well-formed;
- semantics describes the meaning of terms (or in the context of logic, what statements are
true);

We defined the syntax of propositional logic:

- T and F are a propositions;
- an atomic propositional variable, such as P and Q
- if p is a proposition, so is ¬p
- if p and q are propositions, so are p ∧ q, p ∨ q, p ⇒ q, and p ⇔ q

This fixes the language that we consider. We can rule out non-sensical terms such as ∧p(∨¬) – but it
doesn’t tell us what the meaning is of a formula such as p ∨ q ⇒ p.

The semantics of propositional logic is given by truth tables. We defined truth tables for all the
operators, such as ∧ and ⇒, and showed how to use these to write a truth table for any syntactically
valid formula in propositional logic.

Theorem Let A, B, and C be sets. Then A ⊆ C ∧ B ⊆ C ⇒ A ∪ B ⊆ C. If we unfold the definition of
subsets and translate this statement to predicate logic, this gives rise to a sizeable formula:

∀A ∀B ∀C ((∀a (a ∈ A ⇒ a ∈ C))∧(∀b (b ∈ B ⇒ b ∈ C)) ⇒ (∀x (x ∈ A∪B ⇒ x ∈ C)))

How should we go about proving this? We could draw a Venn diagram to convince ourselves that
this is true – but let’s look at what a written proof looks like.

Proof:

- Suppose A ⊆ C and B ⊆ C. We must show A ∪ B ⊆ C. By definition of set inclusion, this
amounts to proving:
- ∀x x ∈ A ∪ B ⇒ x ∈ C
- Let x be some element of A ∪ B. We need to show that x ∈ C.
- From x ∈ A ∪ B, we know that either x ∈ A or x ∈ B:
o if x ∈ A, we know that x ∈ C by our assumption that A ⊆ C
o if x ∈ B, we know that x ∈ C by our assumption that B ⊆ C

Hence, we can conclude that x ∈ C as required.

There are different proof strategies or proof templates that can be used to write such formal proofs.
Typically, there will be two proof strategies for each such logical operator and quantifier:

1. a introduction strategy tells you how to prove a goal of the form “example: p ∧ q”
2. a elimination strategy tells you how to use an assumption of the form

To find a proof, you: 1. write down all you assumptions and apply elimination strategies. 2. write
down the conclusion you wish to prove and use introduction strategies. By repeating these two
steps, the proof goals should get simpler – until the proof is finished.

, In the example prove, we showed that A ⊆ C ∧ B ⊆ C ⇒ A ∪ B ⊆ C in the following fashion:




General templates for prove strategies:



Implication Introduction: When I have to prove an implication which has the
form P => Q. We assume that P holds, and then we give a prove of Q. From
that we can conclude that P => Q. Example: We call a number a even if a = 2 ×
k for some number k. Theorem: The product of two even numbers is also
even. Question:

Make this statement precise and finish this proof. Be explicit about the proof
strategy used. Proof We need to show that if a and b are even, then so is a × b.
Assume a and b are even. By definition, we know a = 2 × n and b = 2 × m. The
product of a and b is (2 × n) × (2 × m). Using simple arithmetic, we can rewrite
this as: 2 × (2 × n × m). Therefore the product of a and b can be written in the
form 2 × k and is also even.



Implication elimination:



As part of the proof done earlier, we showed that if a ∈ A and A ⊆ C, we can
conclude that a ∈ C.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
luukvaa Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
760
Lid sinds
7 jaar
Aantal volgers
589
Documenten
12
Laatst verkocht
1 week geleden

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4,0

284 beoordelingen

5
108
4
102
3
58
2
5
1
11

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen