100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Instrumentele Spectroscopie

Beoordeling
3,0
(1)
Verkocht
10
Pagina's
20
Geüpload op
30-04-2014
Geschreven in
2013/2014

Een samenvatting met alle benodigde informatie voor het tentamenonderdeel 'Instrumentele Spectrometrie' voor VC3B. Gebaseerd op Principles of Instrumental Analysis door Douglas A. Skoog et al.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Lichtbronnen, detectoren, monochromatoren, atoomspectrometrie, atoomemissiespectrometrie, moleculair
Geüpload op
30 april 2014
Aantal pagina's
20
Geschreven in
2013/2014
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

SOURCES
DESIGNS OF OPTICAL INSTRUMENTS
Typical spectroscopic instruments contain five components:
1. A stable source of radiant energy
2. A transparent container for holding the sample
3. A device that isolates a restricted region of the spectrum for measurement
4. A radiant detector, which converts energy to a usable signal
5. Signal processor and readout

Figure 7-1, p. 144 describes the setup of various types of instruments


SOURCES OF RADIATION
In order to be suitable for spectroscopic studies, a source must generate a beam of radiation
with sufficient power for easy detection and measurement. Figure 7-3a lists the most widely
used spectroscopic sources. Continuum sources emit radiation that changes in intensity only
slowly as a function of wavelength. Line sources emit a limited number of lines or bands of
radiation each of which spans a limited range of wavelengths.


EMISSION OF RADIATION
Electromagnetic radiation is produced when excited particles (atoms, ions, or molecules) relax
to lower energy levels by giving up their excess energy as photons. This excitation can be
brought about by a variety of means, including:
1. Bombardment with electrons or other elementary particles
a. Generally leads to X-radiation
2. Exposure to an electrical current (ac), spark or the heat of a flame
a. Produces UV, visible or IR radiation
3. Irradiation with a beam of electromagnetic radiation
a. Produces fluorescent radiation

LINE SPECTRA
Line spectra in the UV and visible regions are produced when the radiating species are
individual atomic particles that are well separated, in a gas phase. The energy-level diagram in
figure 6-17a shows the source of two of the lines in a typical emission spectrum of an element.

BAND SPECTRA
Often encountered in spectral sources when gaseous radicals or small molecules are present.
Bands arise from numerous quantized vibrational levels that are superimposed on the ground-
state electronic energy level of a molecule. Vibrational levels associated with the two excited
states have been omitted because the life-time of an excited vibrational state is brief compared
with that of an electronically excited state.


CONTINUUM SPECTRA
Thermal radiation of this kind, blackbody radiation, is characteristic of the temperature of the
emitting surface rather than the material of which that surface is composed. Blackbody radiation
is produced by the innumerable atomic and molecular oscillations excited in the condensed solid
by the thermal energy.

, ABSORPTION OF RADIATION
Absorption is a process in which electromagnetic energy is transferred to the atoms, ions, or
molecules composing the sample. Absorption promotes these particles to one or more higher-
energy excited states. The nature of a spectrum is influenced by such variables as the
complexity, the physical state, and the environment of the absorbing species. More fundamental,
however, are the differences between absorption spectra for atoms and those for molecules.


ATOMIC ABSORPTION
The passage of polychromatic UV or visible radiation through a medium that consists of
monoatomic particles, such as gaseous mercury or sodium, results in the absorption of but a few
well-defined frequencies. The relative simplicity is due to the small number of possible energy
states for the absorbing particles. Several other narrow absorption lines, corresponding to other
allowed electronic transitions, are also observed. Ultraviolet and visible radiation has sufficient
energy to cause transitions of the outermost for bonding electrons only. X-Ray frequencies, on
the other hand, are several orders of magnitude more energetic and are capable of interacting
with electrons that are closest to the nuclei of atoms.


MOLECULAR ABSORPTION
Absorption spectra for polyatomic molecules, particularly in the condensed state, are
considerably more complex than atomic spectra because the number of energy states is
generally enormous when compared with the number of energy states for isolated atoms. The
energy difference between the ground state and an electronically excited state is large relative to
the energy differences between vibrational levels in a given electronic state.


HOLLOW CATHODE LAMPS
These types of lamps are the most commonly used lamps for atomic absorption measurements.
It consists of a tungsten anode and a cylindrical cathode sealed in a glass tube that is filled with
neon or argon at a pressure of 1-5 torr. The cathode is constructed of the metal whose spectrum
is desired or serves to support a layer of that metal. Ionization of the inert gas occurs when a
potential on the order of 300 V is applied across the electrodes, which generates a current of
about 5 to 15 mA as ions and electrons migrate to the electrodes. If the potential is sufficiently
large, the gaseous cations acquire enough kinetic energy to dislodge some of the metal atoms
from the cathode surface and produce an atomic cloud in a process called sputtering. A portion
of the sputtered metal atoms are in excited states and thus emit their characteristic radiation as
they return to the ground state. Eventually, the metal atoms diffuse back to the cathode surface
or to the glass walls of the tube and are redeposited.


SELF-ABSORPTION
The greater currents produce an increased number of unexcited atoms in the cloud. The
unexcited atoms, in turn, are capable of absorbing the radiation emitted by the excited ones. This
self-absorption leads to lowered intensities, particularly at the center of the emission band.

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
7 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
AWHens Hogeschool Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
165
Lid sinds
11 jaar
Aantal volgers
74
Documenten
26
Laatst verkocht
6 maanden geleden

3,1

21 beoordelingen

5
3
4
5
3
8
2
2
1
3

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen