Week 1
Verband tussen twee variabelen
1. Samenhang (associatie, interdependence)
a. Beide variabelen hebben dezelfde rol en hangen wellicht van een (onbekende) derde
af
2. Afhankelijkheid (dependence)
a. Voorspelling (regressie) of causaliteit
b. Onafhankelijke (explanatory) variabele X bepaalt afhankelijke (response) variabele Y
Wat is nodig voor vaststellen samenhang?
Twee (of meer) variabelen geobserveerd bij dezelfde n cases
Meetniveau variabelen:
ͯ Numeriek + numeriek
ͯ Categorisch + numeriek
ͯ Categorisch + categorisch
Twee variabelen V1 en V2 zijn geassocieerd als bepaalde waarden van V1 vaker optreden met
sommige waarden van V2 dan met andere waarden
Causaliteit is er een effect?
1. Covariantie variabelen moeten samenhangen
2. Directionaliteit oorzaak gaat vooraf aan gevolg
3. Interne validiteit alternatieve verklaringen uitgesloten
Scatterplot
Wordt gebruikt bij het krijgen van inzicht van de relatie tussen variabelen
Op de X-as staat de voorspeller (predictor)
Op de Y-as staat de criterion variable
De rechte lijn die je door de puntjes kan trekken heet de regressielijn
ͯ Lineair bij een rechte lijn
ͯ Curvi lineair bij een gekromde / niet rechte lijn
De mate waarin de puntjes om de regressielijn clusteren hangt samen met de correlatie
ͯ Loopt van -1.00 tot +1.00
Relaties beschrijven
A) Algemeen patroon
a. Richting
i. Positief (stijgend) of negatief (dalend)
b. Sterkte
i. Hoe meer de punten op één (rechte) lijn liggen, hoe sterker het verband
c. Vorm
i. Lineair verband rechte lijn (ongeveer)
ii. Niet-lineair verband totaal geen rechte lijn
iii. Homogeen één geheel
iv. Heterogeen meerdere clusters
B) Opvallende afwijkingen
a. Uitbijters punten die duidelijk afwijken van het algemene patroon
i. Kunnen sterkte van verband beïnvloeden
, Covariantie
maat voor sterkte en richting van samenhang
nadeel is dat het moeilijk te interpreteren is, want de waarde is afhankelijk van de meeteenheid.
De oplossing hiervoor is om de covariantie te standaardiseren (zie pearson product-moment
correlatie)
Van variantie naar covariantie
Variantie niet geschikt voor bivariate data (2 variabelen)
Covariantie voegt de variantie van beide variabelen samen in één formule voor covariantie
ͯ s xy=
∑ (x i−x )( y i− y )
n−1
Pearson Product-Moment Correlatie (r)
Maat voor samenhang tussen twee intervalvariabelen (kwantitatieve variabelen)
Correlatie ligt tussen -1.00 en +1.00
Geen onderscheid tussen afhankelijke en onafhankelijke variabele
Gestandaardiseerd (niet beïnvloed door meeteenheid)
2 formules:
1. r xy =
∑ zx z y
n−1
s xy
2. r xy =
sx s y
Vuistregels beoordelen r
Small 0.1
Medium 0.3
Large 0.5
Pas op voor
Niet-lineaire verbanden
Uitbijters
Heterogene subgroepen
ͯ Het samenvoegen van (sub)groepen met verschillende gemiddelden kan r beïnvloeden
Restriction of Range
ͯ Beoordelen van een relatie tussen x en y in een subgroep kan resulteren in een over- of
onderschatting van die relatie (je hebt geen overzicht van álle data)
Samenhang met categorische variabele
Dichotome variabele (2 waarden)
Interval variabele
ͯ Je kan niet spreken van positief/negatief niveau wel iets over gemiddelde
Criteria causaliteit alleen experimenteel onderzoek
1. Covariantie
a. Variabelen moeten samenhangen
2. Directionality
a. Oorzaak gaat in de tijd vooraf aan gevolg
3. Interne validiteit
a. Alternatieve verklaringen uitgesloten
Verband tussen twee variabelen
1. Samenhang (associatie, interdependence)
a. Beide variabelen hebben dezelfde rol en hangen wellicht van een (onbekende) derde
af
2. Afhankelijkheid (dependence)
a. Voorspelling (regressie) of causaliteit
b. Onafhankelijke (explanatory) variabele X bepaalt afhankelijke (response) variabele Y
Wat is nodig voor vaststellen samenhang?
Twee (of meer) variabelen geobserveerd bij dezelfde n cases
Meetniveau variabelen:
ͯ Numeriek + numeriek
ͯ Categorisch + numeriek
ͯ Categorisch + categorisch
Twee variabelen V1 en V2 zijn geassocieerd als bepaalde waarden van V1 vaker optreden met
sommige waarden van V2 dan met andere waarden
Causaliteit is er een effect?
1. Covariantie variabelen moeten samenhangen
2. Directionaliteit oorzaak gaat vooraf aan gevolg
3. Interne validiteit alternatieve verklaringen uitgesloten
Scatterplot
Wordt gebruikt bij het krijgen van inzicht van de relatie tussen variabelen
Op de X-as staat de voorspeller (predictor)
Op de Y-as staat de criterion variable
De rechte lijn die je door de puntjes kan trekken heet de regressielijn
ͯ Lineair bij een rechte lijn
ͯ Curvi lineair bij een gekromde / niet rechte lijn
De mate waarin de puntjes om de regressielijn clusteren hangt samen met de correlatie
ͯ Loopt van -1.00 tot +1.00
Relaties beschrijven
A) Algemeen patroon
a. Richting
i. Positief (stijgend) of negatief (dalend)
b. Sterkte
i. Hoe meer de punten op één (rechte) lijn liggen, hoe sterker het verband
c. Vorm
i. Lineair verband rechte lijn (ongeveer)
ii. Niet-lineair verband totaal geen rechte lijn
iii. Homogeen één geheel
iv. Heterogeen meerdere clusters
B) Opvallende afwijkingen
a. Uitbijters punten die duidelijk afwijken van het algemene patroon
i. Kunnen sterkte van verband beïnvloeden
, Covariantie
maat voor sterkte en richting van samenhang
nadeel is dat het moeilijk te interpreteren is, want de waarde is afhankelijk van de meeteenheid.
De oplossing hiervoor is om de covariantie te standaardiseren (zie pearson product-moment
correlatie)
Van variantie naar covariantie
Variantie niet geschikt voor bivariate data (2 variabelen)
Covariantie voegt de variantie van beide variabelen samen in één formule voor covariantie
ͯ s xy=
∑ (x i−x )( y i− y )
n−1
Pearson Product-Moment Correlatie (r)
Maat voor samenhang tussen twee intervalvariabelen (kwantitatieve variabelen)
Correlatie ligt tussen -1.00 en +1.00
Geen onderscheid tussen afhankelijke en onafhankelijke variabele
Gestandaardiseerd (niet beïnvloed door meeteenheid)
2 formules:
1. r xy =
∑ zx z y
n−1
s xy
2. r xy =
sx s y
Vuistregels beoordelen r
Small 0.1
Medium 0.3
Large 0.5
Pas op voor
Niet-lineaire verbanden
Uitbijters
Heterogene subgroepen
ͯ Het samenvoegen van (sub)groepen met verschillende gemiddelden kan r beïnvloeden
Restriction of Range
ͯ Beoordelen van een relatie tussen x en y in een subgroep kan resulteren in een over- of
onderschatting van die relatie (je hebt geen overzicht van álle data)
Samenhang met categorische variabele
Dichotome variabele (2 waarden)
Interval variabele
ͯ Je kan niet spreken van positief/negatief niveau wel iets over gemiddelde
Criteria causaliteit alleen experimenteel onderzoek
1. Covariantie
a. Variabelen moeten samenhangen
2. Directionality
a. Oorzaak gaat in de tijd vooraf aan gevolg
3. Interne validiteit
a. Alternatieve verklaringen uitgesloten