100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Advanced Separation Sciences

Beoordeling
4,0
(1)
Verkocht
2
Pagina's
23
Geüpload op
11-09-2020
Geschreven in
2019/2020

Summary of 23 pages for the course Advanced Separation Sciences at UvA (Complete summary)











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
11 september 2020
Aantal pagina's
23
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Summary Advanced Separation Sciences

Field Flow Fractionating (FFF):
- Elution order: small → medium → large
- Field applied perpendicular to transport flow within a channel
- No stationary phase
- Laminar flow, parabolic profile
- Brownian motion, diffusion coefficient Df
- Low shear forces → tangential shear → higher-order structures,
especially those prone to shear stress
- Mw range 103 – 1010 g/mol
- Measures wide range of physicochemical properties

Differences chromatography and FFF:
- All chromatographic separations are based on the partitioning of components
between two immiscible phases
- Separation at depends only on the conformational entropy change when
macromolecule diffuses from the interstitial volume into the pores of packing, and
back out again → no enthalpic interactions
- FFF: separation based on coupling of velocity non-uniformities and concentration
non-uniformities




Different localizations of particles due to diffusion → end up in different velocities of flow →
different retention times

Principle: components elute at different speeds depending on D and position in channel
- Retention and separation caused by an external field,
perpendicular to the axial flow
- Separation based on differences in diffusion coefficients of
analytes → Brownian
- Field strength can be precisely controlled
- Particles driven by the field to different localized regions in
the channel and displaced downstream at a velocity equal
to the mean parabolic flow velocity in that region
- Particles are carried out towards the detector at different
speeds → different times

,Asymmetrical FFF: AF4
- Possible to detect larger aggregates, higher reproducibility and no protein adsorption
- One flow inlet, two flow outlets
- Only one permeable wall supporting the membrane for transversal flow exiting the
channel via the accumulation wall
- Fin = Fcr + Fch Fcr: cross flow Fch: flow out
- Field created by splitting the longitudinal flow to generate the cross flow that
permeates the accumulation wall
- Geometries:
- Channel: peak dilution reduces, lower LODs and faster separations
- Cylindrical: hallow fibers = HF5
- Detection: triple detection: UV/fluorescence, RI and MALS
- UV/fluorescence: concentration, hydrodynamic size
- Multi angle light scattering (MALS) + RI: particle size distribution and molar mass
- Mass spectrometry: chemical and structure identification → advantage e.g. TOF is
fast detection method, preferred as FFF is slow
- Asymmetric as the glass upper plate is nonpermeable to the carrier and it has a
permeable lower plate

AF4 procedure:
1. Sample injection:
Vinj = Finj x tinj > 5 x (Vsample + Vtubing)
2. Focusing / relaxation:
- Both channel-in and channel-out ports pump liquid into channel at same time
- Point of focusing determined by Fleft/Fright
- Essential for minimizing band broadening
- Analytes relax into a steady state before being transported to the detector
- Gaussian distribution of components around focusing point
- Occurs through Brownian motion in response to cross flow induced
- Focusing time: typically 2-6 min
- ‘Vertical’ relaxation: by induced cross-flow
- ‘Horizontal’ focusing: by applied channel flows
- Disadvantages: takes time, risk of material loss, adsorption to membrane and
interactions between analytes
- Advantages: less peak broadening and possibilities for sample pre-concentration
3. Elution:
- Molecules are transported to detector by laminar flow and pushed to membrane by
induced crossflow
- Components start to separate based on differences in diffusion coefficients (D)
- High D → high distance from wall → faster elution (in Brownian mode)

Effect of field:
- Causes analyte to move towards the accumulation wall at velocity u cr
- Diffusion forces: oppose the resulting build-up in concentration
𝐷
- 𝑙𝑖 = 𝑢 𝑖
𝑐𝑟
l: characteristic layer thickness; mean distance of molecules in steady state from wall
- Steady state establishes when opposing forces ucr and D are balanced

, - Low Mw → high D → in higher velocity of laminar flow, elute first
- High Mw → low D → closer to wall, lower stream velocity, elute last
- Behavior of analytes affected by D and strength of applied field
- l can be modified by tuning the applied fiend

Normal vs steric mode:
- Normal mode (Brownian elution): elution depends on D and field strength
→ small particles elute first
- Steric mode: particles too large to be affected by cross-flow → will protrude out of
the accumulation layer into faster streamlines and exit the separator faster than
small particles
→ elution depends on particle radius and spacer thickness (w)

Effect of flow:
2
- 𝑣0 = 3 𝑣𝑚𝑎𝑥
𝑥
- 𝑥 → 0: 𝑣(𝑥) = 6 𝑤 𝑣0
𝑙
- 𝑣𝑖 ≈ 𝑣(𝑙) = 6 𝑤𝑖 𝑣0
1 𝑤 1 𝑤∙𝑢𝑐𝑟
- 𝑡𝑅,𝑖 = 6 ∙ 𝑙 𝑡0 = 6 ∙ 𝑡0
𝑖 𝐷𝑖
𝑙 𝐷𝑖
- Retention factor: 𝜆 = 𝑤𝑖 = 𝑢
𝑐𝑟 ∙𝑤
- Approximation: 𝑣𝑖 ≈ 𝑣(𝑙) = 6 ∙ 𝜆 ∙ 𝑣0
𝑤2 𝐹
- Elution time in AF4: 𝑡𝑅,𝑖 = 6𝐷 ∙ ln (1 + 𝐹𝑐𝑟 )
𝑖 𝑐ℎ
𝑘𝑇
- Diffusion coefficient: 𝐷 = 6𝜋𝜂𝑟 rH: hydrodynamic radius
𝐻


Measure D and Mw:
- Take standard with known D → make sure  < 0.02 → calculate effective w from
retention time for the standard → use this w-value to calculate D for an unknown
component with known retention time → use scaling law to find estimation of M
- D = a * Mw-b
a: calibration constant
b = 0.56 for linear synthetic polymer in good solvent
b = 0.40 for globular proteins in water
for globular proteins: log D = -8.27 – 0.40 log(Mw)

Optimization parameters:
- High Mw compounds with low D elute later
- Fcr/Fch determines retention, not the magnitude of flow rates
- The tinner the space, the lower the retention (at same flow ratio)
- Length of channel does not matter
- By choosing proper flow ratio and spacer thickness, you can get any retention time
you like

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
analyticalsciences Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
17
Lid sinds
5 jaar
Aantal volgers
9
Documenten
11
Laatst verkocht
1 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen