100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

ECB3AMT Applied Micro-econometric Techniques Full Summary

Beoordeling
-
Verkocht
1
Pagina's
66
Geüpload op
21-04-2025
Geschreven in
2024/2025

This summary is written for the course ECB3AMT. This course is part of the dedicated minor Applied Data Science.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 april 2025
Aantal pagina's
66
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

Applied Micro-econometric Techniques

2024-2025

Utrecht University

, Applied Micro-econometric Techniques

Topic 0: Introduction
What is this course about?

- Cause-and-effect relationships

Questions we ask:

- What is the effect of price on sales
- How do marketing campaigns affect sales
- How do business strategies affect returns
- How do active labour market policies affect participants
- How does trade with China affect Dutch labour market?
- How does the introduction of robots affect firm productivity

The Gold Standard:

- This term refers to methods or approaches considered the most reliable and
accurate for establishing causal relationships
- A Randomized experiment is often regarded as the “Gold Standard”
- Some reasons why (added content)
o Random assignment
 To treatment and control groups
o Control of confounders
 Balances observed and unobserved characteristics
o Clear counterfactuals
 Control group represents what would have happened to the
treatment group in absence of treatment
- Yet, this is often infeasible in economics and business.

In this course we focus on experiments and quasi-experiments

- Natural experiments: assignment criterion occurs ‘naturally’ (without researcher
intervention)
- Quasi-experiments: criterion for assignment is selected by the researcher

Position in the program

- Regression




- ADAVE I and II looks at correlation and prediction
o Focuses on Y and Ŷ
- AMT looks at causal relationships between β and β^
o We disregard statistics like R2 in causal analysis
o We are more concerned whether our research design provides a credible
estimate of our population parameter


2

, Applied Micro-econometric Techniques
Topic 1: Regression
1. Correlation versus causality




Correlation does not imply causality

- Left panel shows a correlation between US spending on science and suicides.
Even though there is a correlation, it doesn’t necessarily imply a causal effect of
increased spending on suicides
- Right panel shows a less close correlation of Japanese cars sold in the US and
suicides by the crashing of motor vehicles.
- We call this spurious correlation

A lack of correlation does not imply lack of a causal effect




- Example: mandatory face masks in public transport in NL from June 2020
o No apparent change in COVID-19 cases, even an increase in the autumn of
2020
- Concluding question: Do face masks have an effect on less COVID cases?
o No: we do not know what would have happened had there been no rule to
wear masks
o There is no clear counterfactual




3

, Applied Micro-econometric Techniques
Vaccinations:

- No clear correlation between vaccine rates and infection numbers (fluctuates
positively and negatively)
- Can we conclude vaccinations have no effect?
o No: We do not know what would have happened if there had been no
vaccinations
o Further studies show vaccinations are effective. It’s just that other things
happen simultaneously.

Threats to the identification of causal effects

Reverse Causality

- Example: Middle Ages
- Europeans believed lice to improve health
- Reasoning: They observed that sick people do not have lice, whereas healthy
people do
o No lice  sick
- However, causality is reversed
- Lice are sensitive to body temperature and leave sick hosts
o No lice  fever

Selection bias and Omitted variables

- Example: health status of people who have (not) been hospitalized) in the past
12 months




- Do hospitals make people sick? E.g. due to germs etc? Not necessarily
- Alternative explanations
o Selection bias
o Omitted variable bias
- Example: a study comparing hospital visits and health status might miss that
sicker people are more likely to visit hospitals (selection bias)

Summary of Causal relationships




4
€9,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
ab3800

Maak kennis met de verkoper

Seller avatar
ab3800 Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
1 jaar
Aantal volgers
0
Documenten
5
Laatst verkocht
4 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen