100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Partial Differential Equations

Beoordeling
-
Verkocht
1
Pagina's
25
Geüpload op
10-04-2025
Geschreven in
2022/2023

Summary of Partial Differential Equations











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 april 2025
Aantal pagina's
25
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

2.1 Stationary waves
ˆ t
∂u ∂u
= 0 =⇒ 0 = (s, x) ds = u(t, x) = u(0, x) =⇒ u(t, x) = u(0, x)(:= f (x))
∂t 0 ∂t
Watch the domain!


2.2 Transport and traveling waves
Uniform transport
∂u ∂u
+c =0
∂t ∂x
Define the variables ξ = x − ct and η = x + ct such that u(t, x) = v(ξ, η). Then use the chain rule:
∂u ∂v ∂ξ ∂v ∂η ∂u ∂v ∂ξ ∂v ∂η
= + , = +
∂x ∂ξ ∂x ∂η ∂x ∂t ∂ξ ∂t ∂η ∂t
Then
 
∂u ∂u ∂v ∂ξ ∂v ∂η ∂v ∂ξ ∂v ∂η
+c = + +c +
∂t ∂x ∂ξ ∂t ∂η ∂t ∂ξ ∂x ∂η ∂x
 
∂v ∂v ∂v ∂v
= (−c) + (c) + c +
∂ξ ∂η ∂ξ ∂η
∂v
=2 =0
∂η
∂v
=0
∂η
Which is then a stationary wave equation. Hence, the general solution for uniform transport is
w(ξ) = u(x − ct)
If we have some initial value u(0, x) = p(x) with general solution w(x), then the solution to the initial
value problem is given by p(x − ct)

Transport with decay
Consider the PDE
∂u ∂u
+c + au = 0, u(0, x) = f (x)
∂t ∂x
This is solved by u(t, x) = f (x − ct)e−at

Nonuniform transport
Consider the PDE
∂u ∂u
+ c(x) =0
∂t ∂t
Define h(t) = u(t, x(t)). We define
ˆ
1
β(x) := dx = t + k =⇒ x(t) = β −1 (t + k)
c(x)
By defining ξ = β(x) − t, we see that the general solution is
u(t, x) = v(β(x) − t)
If we have the initial condition u(0, x) = f (x), then we can find the solution to the initial value problem
by
u(t, x) = f ◦ β −1 (β(x) − t)


1

,2.4 The wave equation: d’Alembert’s Formula
One-dimensional wave equation:
∂2u ∂2u ∂u
2
= c2 2 , u(x, 0) = f (x), (0, x) = g(x)
∂t ∂x ∂t
How to solve? First write as a linear operator:
L = ∂t2 − c2 ∂x2 =⇒ [u] = 0
Now we factor our operator:
L = (∂t − c∂x ) (∂t + x∂x )
Hence we see that both ∂t − c∂x = 0 and ∂t + c∂x = 0 are solutions. Hence, we have that p(x − ct) and
q(x + ct) are solutions. Then by the superposition principle, we see that the full solution to the wave
equation is
u(t, x) = p(x − ct) + q(x + ct)
Theorem 2.15 The solution to the initial value problem
∂2u ∂2u ∂u
2
= c2 2 , u(0, x) = f (x), (0, x) = g(x), −∞ < x < ∞
∂t ∂x ∂t
is given by ˆ x+ct
f (x − ct) + f (x + ct) 1
u(t, x) = + g(z) dz
2 2c x−ct


3.1 Eigensolutions of Linear Evolution Equations
Heat equation:
∂u ∂2u
=
∂t ∂x2
Linear evolutionary form:
∂u
= L[u]
∂t
How to solve the heat equation? Consider 3 cases:

λ Eigenfunctions v(x) Eigensolutions u(t, x) = eλt v(x)
2 2
λ = −ω 2 < 0 cos(ωx), sin(ωx) e−ω t cos(ωx), e−ω t sin(ωx)

λ=0 1, x 1 ,x
2 2
λ = ω2 > 0 e−ωx , eωx eω t−ωx
, eω t+ωx


Any finite linear combination of the above is also a solution.


3.2 Fourier series
Definition 3.2 The Fourier series of a function f (x) defined on −π ≤ x ≤ π is

a0 X
f (x) ∼ + [ak cos(kx) + bk sin(kx)]
2
k=1

whose coefficients are given by the inner product formulae
ˆ
1 π
ak = ⟨f, cos(kx)⟩ = f (x) cos(kx) dx k = 0, 1, 2, 3, . . .
π −π
ˆ
1 π
bk = ⟨f, sin(kx)⟩ = f (x) sin(kx) dx k = 1, 2, 3, . . .
π −π

2

, Periodic extensions
Lemma 3.4 If f (x) is any function defined for −π ≤ x ≤ π, then there is a unique 2π-periodic function
f˜, known as the 2π-periodic extension of f , that satisfies f˜(x) = f (x) for all π < x < π.

Piecewise continuous functions
Definition 3.6 A function f (x) is said to be piecewise continuous on an interval [a, b] if it is defined
and continuous except possibly at a finite number of points a ≤ x1 < 2x < · · · < xn ≤ b. Furthermore,
at each point of discontinuity we require that the left- and right-handed limits

f (x− +
k ) = lim f (x) f (xk ) = lim f (x)
x→x−
k x→x+
k


exist. At the endpoints, only one is required to exist (namely f (a+ ) and f (b− )).


We define βk = f (x+
k ) − f (xk ) the magnitude of the jump.

Definition 3.7 A function f (x) is called piecewise C 1 on an interval [a, b] if it is defined, continuous
and continuously differentiable except at a finite number of points a ≤ x1 < · · · < xn ≤ b. At each
exceptional point, the left-and right-hand limits of both the function and its derivative exist.

The convergence theorem
Theorem 3.8 If f˜(x) is a 2π-periodic, piecewise C 1 function, then, at any x ∈ R, its Fourier series
converges to

f˜(x), if f˜ is continuous at x
1 ˜ +
[f (x ) + f˜(x− )], if x is a jump discontinuity
2

Even and odd functions
Definitions and lemma’s:
• A function is called even if f (−x) = f (x)
• A function is called odd if f (−x) = −f (x)
• The sum of two even functions is even
• The sum of two odd functions is odd
• the product of two even or two odd functions is even
• the product of an even and an odd function is odd
´a
• If f is odd and integrable on the symmetric interval [−a, a], then −a
f (x)dx = 0
´a ´a
• If g is even and integrable on the symmetric interval [−a, a], then −a
g(x)dx = 2 −a
g(x)dx
Proposition 3.14 If f (x) is even, then f (x) can be represented by a Fourier cosine series (i.e. bk = 0
for all k). If f (x) is odd, then f (x) can be represented by a Fourier sine series (i.e. ak = 0 for all k).
Conversely, a convergent Fourier cosine series always represents an even function, while a convergent sine
series always represents an odd function.




3
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jardnijholt

Maak kennis met de verkoper

Seller avatar
jardnijholt Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
7 maanden
Aantal volgers
0
Documenten
22
Laatst verkocht
6 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen