100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Alle aanbevolen hoofdstukken van Field TAK (2024/2025)

Beoordeling
-
Verkocht
-
Pagina's
25
Geüpload op
10-03-2025
Geschreven in
2024/2025

Deze samenvatting van het boek van Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics. (5th ed.), bevat de hoofdstukken die volgens de cursushandleiding gelezen moeten worden: Week 6: 9-9.2, 10-10.5, 12-12.3, 13-13.4 en 9.6-9.7, 10.6-10.8, 12.6-12.7, 13.4-13.7 Week 8: 4.10 Week 10: 18-18.12 Week 11: 6.1 - 6.12, 9.9 - 9.11, 11.5 Week 12: 11-11.5 Week 13: 20-20.7

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Alle verplichte hoofdstukken voor studiejaar 2024/2025
Geüpload op
10 maart 2025
Aantal pagina's
25
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Inhoudsopgave
Chapter 4 The IBM SPSS statistics environment...................................................2
4.10 The syntax editor......................................................................................................... 2

Chapter 6 The beast of bias................................................................................3
6.2 What is bias?.................................................................................................................. 3
6.3 Outliers.......................................................................................................................... 3
6.4 Overview of assumptions............................................................................................... 4
6.5 Additivity and linearity................................................................................................... 4
6.6 Normally distributed something or other.......................................................................4
6.7 Homoscedasticity/homogeneity of variance...................................................................4
6.8 Independence................................................................................................................ 5
6.9 Spotting outliers............................................................................................................. 5
6.10 Spotting normality....................................................................................................... 5
6.11 Spotting linearity and heteroscedasticity/heterogeneity of variance...........................5
6.12 Reducing bias............................................................................................................... 6

Chapter 9 The linear model (regression)..............................................................6
9.2 An introduction to the linear model (regression)............................................................6
9.6 Fitting linear models: the general procedure.................................................................8
9.7 Using SPSS statistics to fit a linear model with one predictor.........................................9
9.9 The linear model with two or more predictors (multiple regression)..............................9
9.10 Using SPSS statistics to fit a linear model with several predictors...............................9

Chapter 10 Comparing two means.....................................................................11
10.2 Looking at differences................................................................................................ 11
10.4 Categorical predictors in the linear model.................................................................11
10.5 The t-test................................................................................................................... 12
10.6 Assumptions of the t-test...........................................................................................12
10.7 Comparing two means: general procedure................................................................12
10.8 Comparing two independent means using SPSS Statistics.........................................12

Chapter 11 Moderation, mediation and multicategory predictors........................13
11.2 The PROCESS tool...................................................................................................... 13
11.3 Moderation: interactions in the linear model..............................................................13

, 11.4 Mediation................................................................................................................... 14
11.5 Categorical predictors in regression...........................................................................14

Chapter 12 GLM 1: Comparing several independent means.................................15
12.2 Using a linear model to compare several means........................................................15
12.3 Assumptions when comparing means........................................................................16
12.6 General procedure of one-way ANOVA.......................................................................17

Chapter 13 GLM 2: Comparing means adjusted for other predictors....................17
13.2 What is ANCOVA?....................................................................................................... 17
13.4 Assumptions and issues in ANCOVA...........................................................................17
13.5 Conducting ANCOVA using SPSS statistics.................................................................18
13.6 Interpreting ANCOVA.................................................................................................. 19
13.7 Testing the assumptions of homogeneity of regression slopes...................................19

Chapter 18 Exploratory factor analysis..............................................................20
18.2 When to use factor analysis.......................................................................................20
18.3 Factors and components............................................................................................20
18.4 Discovering factors.................................................................................................... 21
18.5 An anxious example................................................................................................... 21
18.6 Factor analysis using SPSS statistics..........................................................................22
18.10 Reliability analysis using SPSS statistics..................................................................22

Chapter 20 Categorical outcomes: logistic regression.........................................23
20.2 What is logistic regression?........................................................................................ 23
20.4 Sources of bias and common problems......................................................................24
20.5 Binary logistic regression........................................................................................... 24
20.7 Reporting logistic regression......................................................................................25


Chapter 4 The IBM SPSS statistics environment
4.10 The syntax editor
Using syntax creates a record of your analysis and makes it reproducible, which is an
important part of engaging in open science practices.

To open a syntax editor window:
- File > new > syntax

, The easiest way to generate syntax in the beginning is to use dialog boxes to specify the
analysis you want to do and then click > paste

You can run the syntax a command at a time from either the current command (Run >
step through > from current) or the beginning (run > step through > from start)




Chapter 6 The beast of bias
6.2 What is bias?
Bias: the summary statistics that we estimate can be at odds with the true values
Models will not predict the outcome perfectly, so for each observation there is some amount of
error.



6.3 Outliers
Outlier: a score very different from the rest of the data

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lauravdgaag Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
185
Lid sinds
3 jaar
Aantal volgers
84
Documenten
24
Laatst verkocht
1 week geleden
Samenvattingen

3,9

16 beoordelingen

5
6
4
6
3
2
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen