100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Quantitative Innovation Analytics - R Formulas & knowledge clips

Beoordeling
-
Verkocht
-
Pagina's
73
Geüpload op
21-12-2024
Geschreven in
2023/2024

In this document, all different formulas used for the program R during this course are provided. Furthermore, I added the important parts of the knowledge clips with supporting images to make it easier to understand.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 december 2024
Aantal pagina's
73
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

General
● install packages
install.packages(“ …”)
library(...)


● Checking class of variable
class()


● Changing class of variables
character_var <- as.character(numeric_var)
→ a character type variable is one that stores textual data, such as letters, words, or
any other character strings
numeric_var <- as.numeric(character_var)
Numeric variables are used to represent quantitative, continuous, or discrete
numeric values, such as integers or real numbers.
date_var <- as.Date("2022-01-01")
→ pick a date
factor_variable <- as.factor(char_vector)
→ represent categorical data in R

● checking NAs
is.na(df)
any(is.na(x)))

● removing NAs
unique()
na.omit()
cleaned_vec <- vec[complete.cases(vec)]


● providing output
summary()


● merging datasets
package = dplyr
inner_join()
result <- inner_join(df1, df2, by = "ID")
left_join() or right_join()
merge()

● interpretation R-squared (R2)

,If R-squared is close to 1, it suggests that the model is a good fit, and a large
proportion of the variability in the dependent variable is explained by the independent
variables.
If R-squared is close to 0, it indicates that the model does not provide a good fit to
the data, and the independent variables do not explain much of the variability in the
dependent variable.

● interpretation intercepts/coefficients
The sign of the coefficient (positive or negative) indicates the direction of the effect.
If the coefficient is positive (e.g., +29.4), it suggests that an increase in the
independent variable is associated with an increase in the dependent variable. If it is
negative, the interpretation is the opposite.

● select and filter data
package = dplyr
selected_data <- select(data, ID, Name)
filtered_data <- filter(data, Age > 25, Score >= 90)
== → selecting on date for example

!= → not want to include this particular thing


● Family

,Model 1: Ordinary Least Squares Models
● Load dataset
airports <- read.delim(file.choose(), sep=",", header=F)
routes <- read.delim(file.choose(), sep=",", header=F)
airunuts <- read.delim(file.choose(), sep=",", header=T)


● Changing names of columns
names(airports) <- c("id", "name", "city", "country", "iata", "guko", "lat", "lon",
"altitude", "timezone", "dst", "timezonename", "type", "source")
names(airports)
names(routes) <- c("Airline", "AirlineID", "SourceAirport", "SourceairportID",
"Destairport", "DestairportID", "Codeshare", "Stops", "Equipment")
names(routes) <-tolower(names(routes))


● Package edges&nodes
library(igraph)


● Making graph from edgelist
edgelist <- routes[c("sourceairport", "destairport")]
package = igraph
route1 <- graph_from_data_frame(edgelist,directed = T,vertices = NULL)


● Calculating mean & median
mean(degree(route1,mode = "in"))
median(degree(route1,mode = "in"))


● Calculating standard deviation of indegree
sd(degree(route1,mode = "in"))


● Calculating indegree and sorting it
sort(degree(route1, mode = "in"), decreasing= T)[1:12]


● Making histogram
hist(degree(route1), col="navyblue", breaks = 50 )


● Create edgelist with large airports only >411 degrees (top 12)
sa <- data.frame(table(edgelist$sourceairport))

, ds <- data.frame(table(edgelist$destairport))
edgelist2 <- merge(edgelist, sa, by.x = "sourceairport", by.y = "Var1", all = T )
edgelist2 <- merge(edgelist2, ds, by.x = "destairport", by.y = "Var1", all = T )
edgelist3 <- edgelist2[edgelist2$Freq.x >411 & edgelist2$Freq.y >411,]
route2 <- graph_from_data_frame(edgelist3[1:2])
plot(route2)


● Differences transitivity, betweenness & closeness
Transitivity: If two neighboring airports are unconnected, people have a larger
likelihood to pass your airport. They might also take an alternative equally long
route however.
Betweenness: Expresses how many people are forced to go through your airport
if they want to take the shortest route.
Closeness: Says something about how many steps you are from other airports.
This makes you are more attractive airport.


● Making histograms of centrality measures
hist(transitivity(route1, type ="local", isolates = "zero"), col="coral", breaks = 50)
hist(betweenness(route1, directed = T), col = "darkorchid2", breaks = 50)
hist(closeness(route1, normalized=F,mode = "in" ), col = "deepskyblue", breaks =
50)
round(sort(betweenness(route1, directed = T), decreasing =T)[1:12],0)
round(sort((closeness(route1, mode="in" )), decreasing =T)[1:12],2)


● run a linear model
model0 <- lm(y ~x, data= namedataset, na.action = na.exclude)
€7,16
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Kim2001
4,0
(1)

Maak kennis met de verkoper

Seller avatar
Kim2001 Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
3
Documenten
23
Laatst verkocht
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen