100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary statistics - part 2

Beoordeling
-
Verkocht
-
Pagina's
24
Geüpload op
21-12-2024
Geschreven in
2020/2021

This a summary of part 2 of the course statistics. Here you can find all lecture notes and important information, with multiple images to make it easier to understand the notes.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 december 2024
Aantal pagina's
24
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

SUMMARY STATISTICS PART 2
Exam 2

LECTURE 9
-Association interval & ordinal variables

Association measures




The smallest rho we can observe is -1 en the biggest +1 so -1 < r, rs, tau > +1
What is covariance?
Two graphs: grades they gave to movie and graph for their age. What
is the relation? If one goes up, the other goes down (grade for movie is
above average, the age is beneath
average, mirrored in that sense)
Score on Y, age on X → they covary
The graph says something about the
direction of association → negative (line
goes down)



Now: covariance + correlation with example 2
Three lectures
A; average = 7, standard deviation = 3
B; average = 6, standard deviation = 3
C; average = 6, standard deviation = 2
A comparing with B
A higher average, but sd is the same → vary identically, they covary fully; the grades
correlate maximum
Now A with C
Not the same average and not the same sd so covariance of C is smaller; they covary less
than A/B; grades correlate, but not maximum.

Covariance
With A/C, determine (x-, y-). In other words, average of A and average of C = 7 ; 6
X deviation = x – x-
Dx = -5, 0, 1, 1, 3
S2x = (∑dx)2 / (n-1) = variance of X
Covariance is similar but instead of dx * dx we’ll have ∑dxdy / (n-1)
So you also have to determine dy (y-y-) = -3, 1, -1, 1, 2

,So ∑dxdy = -5 x -3 + 0 x 1 + 1 x -1 + 1 x 1 + 3 x 2
= 21
Then the covariance is 21 / (n-1) = 21/4 = 5,25
So the covariance is kind of a ‘combined’
variance (can be positive or negative and gives
an indication for correlation → negative or
positive association but depends on the scale
you use = scale-sensitive
Therefore, covariance → correlation
R = covariance / sxsy (Standard deviation)
For example above: 5, x 2 = 0,875 (correlation coefficient, 0 = no correlation)
R2 = 0,77 (77% linearly explained)
R = not scale sensitive so you can compare different variables
R = coefficient of linear association (standardized covariance). -1 < r < 1
R = standardized regression coefficient b in case of simple regression (one independent
variable)
R2 = proportion variation in y linearly explained by x
Covariance is not an association measure (Scale sensitive) but we do use it to determine
correlation
Example; r = -0,5
• Negative correlation
• A 1.0 sx increase in x association with a 0,5sy decrease in y
• R2 = 0,25 (25% y-variation linearly explained by x = medium linear association)

Eta vs. r
Eta = more general
Eta2 = proportion variation y explained by x
Eta2 ≥ r2
(Because r2 is linearly explained (so less explained))
Advantage eta
• Variable x; every measurement level
• More general association
Disadvantage
• Less specific. With r, there is a direction
• Eta y on x is not the same as eta x on y (not symmetrical, as is the case with r)

Does the correlation make sense?
Sometimes it is high without making sense. Therefore, base it on existing theories!
Till now: pearson r

R vs. rank correlation, if
• 1 or both variable ordinal measurement level
• Increasing or decreasing, but curved
Advantage = more general useable
Disadvantage = less specific
Rank correlation measures; spearmans rs & Kendall’s tau

First: rank scores

, In our example, x-bar has 2 points on the third
score so 2x 3.5! And the last one 5. Do the same for
y-bar and you’ll have the rank scores!
First: determine covariance = 1,81 (∑dxdy / (n-1))
Then: determine s2x (rank) = ∑(x-x-)2/(n-1) and
s2y (rank) = ∑(y-y-) / (n-1)
Rs = covariance / √(s2x) * √(s2y)

Kendall’s tau (τ)
Consider pairs of points: pair of points is called
concordant; 1 point in pair has both a higher x and
a higher y
In example number of concordant pairs, k+ = 7
And number of discordant pairs k- = 1 (x-value is larger than point, and y not, or the
other way around)
K+ = upward arrow and k- = downward arrow
Neutral pairs (same x-value or same y-value) = 2
Tau-a = proportion of concordant – discordant pairs / number of pairs
7- = 0,6
Tau-b is used in SPSS (neutral pairs is partly included) and tau-c can also be calculated
Association is less → could be that scores are more spread around the line
SPSS:
Analyze → correlate → bivariate (2 variables)
Tick: pearson, Kendall’s tau-b, Spearman
Select the 2 variables
Test of significance → OK

In output of SPSS with correlation between A&C
Pearson correlation = r = 0,875 and p = 0,026
Spearman’s rho = rs = 0,763 and p = 0,067
Kendall’s tau-b = τ = 0,667 and p = 0,059
R is largest, but with rs and τ p is larger so…
• R is most extreme due to outlier and significant
• Values rs and τ smaller and not significant
• P for rs and τ almost similar
How do we obtain p?
3 correlation tests (statistically significance)
Testing H0: p(rho) = 0 = Pearson rho
T = r / (1-r2) * √(n-2)
Testing H0: ps = 0 Spearman rho
T = rs / (1-rs2) * √(n-2)
Testing H0: τ = 0 Kendall’s tau
Z = |K+ - K-| - 1 / (√(n(n-1)(2n+5)/18)

Partial correlation
Example 3: rjump, height = 0,454. Do we need to include a third variable such as BMI? =
Partial correlation = rxy.w = how big is rjump, height if you eliminate the influence of BMI?
1. Regression jumph (jumping height) on BMI: influence of BMI is removed from e’s
(error jump)
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Kim2001
4,0
(1)

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Statistics - part 1 & 2
-
2 2024
€ 10,98 Meer info

Maak kennis met de verkoper

Seller avatar
Kim2001 Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
3
Documenten
23
Laatst verkocht
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen