100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Exam notes Statistical Reasoning: Theory and Application (KY)

Beoordeling
-
Verkocht
3
Pagina's
62
Geüpload op
01-12-2024
Geschreven in
2023/2024

Summary of both book and lecture note with SPSS process for each test which can help buyer to prepare well for the final exams for statistics. I have received a with 7.4 for the statistics exam with the help of the note.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
1 december 2024
Aantal pagina's
62
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Drs. s. klinkenberg
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Statistical Modeling for Communication Research
NOTES - BOTH BOOK & LECTURE


WEEK 1

Chapter 1: Statistical Inference
● Sample statistics: A number describing a characteristic of a sample.
○ The number of yellow candies in the sample (bag) is the sample statistic
● Expected value/ Expectation: The mean of a probability distribution, such as a sampling
distribution.
○ The mean of the sampling distribution of the sample proportion = the population
proportion

Statistical inference統計推論: generalization from the data collected in a random sample to the
population from which the sample was drawn.
● Offers techniques for making statements about a larger set of observations from data collected for
a smaller set of observations
● Types of statistical inference:
○ Estimation
○ Null hypothesis testing

Sampling distribution: Focuses on samples not on the individual items
● 1 sample = 1 observation
● Definition: All possible sample statistic values and their probabilities or probability densities.
● Sampling distributions are the central element in estimation and null hypothesis testing
● Simulation means that we let a computer draw many random samples from a population
● Sampling distribution contains very many samples
○ The population and the sample consist of the same type of observations.
■ E.g. we are dealing with a sample and a population of candies
○ The sampling distribution is based on a different type of observation, namely samples
■ E.g. sample bags of candies.
1. Draw thousands of samples → Sampling distribution
2. Calculate the mean of sampling distribution (Expected value)
→ The true population value
● The mean of the sampling distribution = The expected value of the sample statistic.
● The mean of the sampling distribution of the sample proportion = The population proportion




1

,Samples requirements:
1. Random samples
a. Definition: A variable with values that depend on chance.
2. Unbiased estimator of the population
3. Continuous vs. Discrete: Probability Density vs. Probabilities
4. Impractical → Too much time for research on a single sample if too many samples were selected

Probability distribution
A Continuous Random variable
● **Probability density: A means of getting the probability that a continuous random variable
(like a sample statistics) falls within a particular range.
● Weight is a continuous variable because we can always think of a new weight between two other
weights
○ E.g. consider two candy weights: 2.8 and 2.81 grams. It is easy to see that there can be a
weight in between these two values, e.g., 2.803 grams




2

, ● Probability of buying a bag with average candy weight between 2.6 and 2.7 grams = 0.064
● Probability of buying a bag with average candy weight of 2.8 or any specific number = 0




**Population mean = Expected value
of the sampling distribution = Average
of the sampling distribution

Unbiased estimator: A sample
statistics for which the expected value
equals the population value.

**A sample is representative of a
population if the variables in the
sample are distributed in the same way
as in the population




A Discrete Random Variable
● **Probabilities: Displayed probabilities always add up to 1
● All possible outcome scores constitute the sampling space
○ Sampling space: All possible sample statistics values.



3

, ■ Example: All values that the sample statistic “Number of yellow candies in the
sample” can take
● The sample statistic is called a random variable → different samples can have different scores




● Tells us all possible samples that we could have
drawn




● Displays the probabilities of a sample bag with a
particular number of yellow candies if 20% of
the candies in the population are yellow


Empirical cycle - Hypothetico-deductive approach
1. Observation
Sparks idea for hypothesis pattern, unexpected event, interesting relation we want to explain
(e.g. personal observation, experience, an imaginary observation)
● Observing relation in one or more instances
● Idea for hypothesis
● Example: Patient is showing post traumatic symptoms
2. Induction
With inductive reasoning relation in specific instances is transformed into general rules
● Inductive inference: Relations holds in specific cases ⇒ Relations holds in all cases
● General rule
● Hypothesis
● Example: Can we diagnose PTSD
3. Deduction




4
€15,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
karenhuang920905

Maak kennis met de verkoper

Seller avatar
karenhuang920905 Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
2 jaar
Aantal volgers
0
Documenten
4
Laatst verkocht
6 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen