100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting wiskundige technieken 1

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
04-11-2024
Geschreven in
2024/2025

Samenvatting wiskundige technieken 1. Alles samengevat wat behandeld is in het vak met uitzondering van voorkennis (wiskunde B middelbare school).










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
4 november 2024
Aantal pagina's
6
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

WISKUNDIGE TECHNIEKEN 1 SAMENVATTING

Van Cartesische coördinaten (𝑥, 𝑦) naar poolcoördinaten (𝑟, 𝜙)

𝑥 = 𝑟 ∙ 𝑐𝑜𝑠𝜙

𝑦 = 𝑟 ∙ 𝑠𝑖𝑛𝜙

Complexe getallen

Algemene notatie 𝑧 =𝑎+𝑏∙𝑖

Polaire representatie 𝑧 = 𝑟𝑒 𝑖𝜙 = 𝑟 ∙ 𝑐𝑜𝑠𝜙 + 𝑟 ∙ 𝑖 ∙ 𝑠𝑖𝑛𝜙

Geconjugeerde 𝑧̅ = 𝑎 − 𝑏 ∙ 𝑖

Modulus 𝑟 = |𝑧| = √𝑎 2 + 𝑏2
𝑏
Argument ϕ = 𝐴𝑟𝑔(𝑧) = 𝑎𝑟𝑐𝑡𝑎𝑛⁡ 𝑎

Eulers notatie 𝑒 𝑖𝜙 = 𝑐𝑜𝑠𝜙 + 𝑖 ∙ 𝑠𝑖𝑛𝜙

Stelling van Moivre (𝑐𝑜𝑠 θ + 𝑖 𝑠𝑖𝑛 θ)𝑛 = 𝑐𝑜𝑠 𝑛θ + 𝑖 𝑠𝑖𝑛 𝑛θ

Goniometrie
𝜋 𝜋
Voor afleiden waardes (co)sinusfuncties 3 en 6 , teken gelijkbenige driehoek en verdeel in tweeën.
𝜋
Voor afleiden waardes (co)sinusfuncties 4 , teken vierkant en verdeel in twee driehoeken.

𝑒 𝑖ϕ − 𝑒 −𝑖ϕ
𝑠𝑖𝑛ϕ =
2𝑖

𝑒 𝑖ϕ + 𝑒 −𝑖ϕ
𝑐𝑜𝑠ϕ =
2
𝑐𝑜𝑠(2𝑥) = 2 𝑐𝑜𝑠 2 (𝑥) − 1

𝑠𝑖𝑛(2𝑥) = 2𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑥)

𝑠𝑖𝑛(α ± β) = 𝑠𝑖𝑛(α) 𝑐𝑜𝑠 (β) ± 𝑐𝑜𝑠(α) 𝑠𝑖𝑛(β)

𝑐𝑜𝑠(α ± β) = 𝑐𝑜𝑠(α) 𝑐𝑜𝑠(β) ∓ 𝑠𝑖𝑛(α) 𝑠𝑖𝑛(β)

Inverse functies

Een functie is een op een en heeft een inverse als 𝑓(𝑥1 ) ≠ 𝑓(𝑥2 )

𝑓(𝑓 −1 (𝑥)) = 𝑥

1
𝑓 ′ (𝑓 −1 (𝑥)) ∙ 𝑓 ′−1 (𝑥) = 1⁡ → ⁡ 𝑓 ′−1 (𝑥) =
𝑓 ′ (𝑓 −1 (𝑥))

Een functie is even als: 𝑓(−𝑥) = 𝑓(𝑥) en oneven als: 𝑓(−𝑥) = −𝑓(𝑥)

, Integreren

Hoofdstelling van de integraalrekening

I) Wanneer 𝑓(𝑥) continu is op interval [𝑎, 𝑏], dan:

𝑑 𝑥
∫ 𝑓(𝑡)⁡𝑑𝑡 = 𝑓(𝑥)
𝑑𝑥 𝑎

II) Wanneer 𝐹(𝑥) een primitieve is van 𝑓(𝑥), dan:
𝑏
∫ 𝑓(𝑥)⁡𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑎

Integratiemethodes

- Standaardintegralen
1 𝑥
o ∫ √𝑎2 −𝑥 2 𝑑𝑥 = ⁡𝑎𝑟𝑐𝑠𝑖𝑛 (𝑎) + 𝐶
−1 𝑥
o ∫ √𝑎2 −𝑥 2 𝑑𝑥 = ⁡𝑎𝑟𝑐𝑐𝑜𝑠 (𝑎) + 𝐶
1 1 𝑥
o ∫ 𝑑𝑥 = 𝑎 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑎) + 𝐶
𝑎 2 +𝑥 2
o
- Substitutie 𝑢 = 𝑓(𝑥)
- Partieel integreren

∫ 𝑢′ 𝑣 ⋅ 𝑑𝑥 = 𝑣𝑢 − ∫ 𝑢𝑣 ′ ⋅ 𝑑𝑥

- Inverse substitutie 𝑥 = 𝑓(𝑢)
o Gebruik 𝑥 = 𝑠𝑖𝑛 𝑢 of 𝑥 = 𝑐𝑜𝑠 𝑢 bij √𝑎 2 − 𝑥 2 , want 1 − 𝑠𝑖𝑛2 𝑥 = 𝑐𝑜𝑠 2 𝑥
o Gebruik 𝑥 = 𝑠𝑒𝑐 𝑢 bij √𝑥 2 − 𝑎 2, want 𝑠𝑒𝑐 2 𝑥 − 1 = 𝑡𝑎𝑛2 𝑥
o Gebruik 𝑥 = 𝑡𝑎𝑛⁡𝑢 bij 𝑎 2 + 𝑥 2 want 𝑡𝑎𝑛2 𝑥⁡ + 1 = 𝑠𝑒𝑐 2 𝑥
𝑃(𝑥)
- Functies van de vorm 𝑄(𝑥) waarin 𝑃 en 𝑄 veeltermen zijn, stappen:
o Wanneer graad 𝑃 ≥ 𝑄, eerst uitdelen door middel van staartdelen.
o Verder met graad 𝑃 < 𝑄, verschillende methoden per graad:
▪ Graad 1: substitutie noemer
▪ Graad 2 & geen nulpunten: inverse substitutie of kwadraat afsplitsen
▪ Graad 2 & één nulpunt: noemer in vorm (𝑎𝑥 + 𝑏)2 schrijven
▪ Graad 2 & twee nulpunten: breuksplitsen

2+𝑥 2+𝑥 𝐴 𝐵 𝐴(𝑥 − 3) + 𝐵(𝑥 − 2) (𝐴 + 𝐵)𝑥 − 3𝐴 − 2𝐵
= = + = =
𝑥2 − 5𝑥 + 6 (𝑥 − 2)(𝑥 − 3) 𝑥 − 2 𝑥 − 3 (𝑥 − 2)(𝑥 − 3) (𝑥 − 2)(𝑥 − 3)

𝐴+𝐵 = 1
⁡ → ⁡𝐴 = −4⁡𝑒𝑛⁡𝐵 = 5
−3𝐴 − 2𝐵 = 2
2+𝑥 −4 5
= +
𝑥 2 − 5𝑥 + 6 𝑥 − 2 𝑥 − 3
Differentiaalvergelijkingen eerste orde

Eerste orde homogene differentiaalvergelijking (beginvoorwaarde 𝑥(0) = 𝑥0 ):
€5,86
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
irisp16

Maak kennis met de verkoper

Seller avatar
irisp16 Saxion Hogeschool
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen