100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Ecological Methods: Applied Statistics (visual)

Beoordeling
5,0
(1)
Verkocht
1
Pagina's
35
Geüpload op
03-10-2024
Geschreven in
2024/2025

Betreft een samenvatting van het derdeonderdeel van Ecological Methods (WEC31806), namelijk Applied Statistics. De samenvatting geeft alle colleges weer van het toegepaste gedeelte en is extra visueel gemaakt, om de stof snel en goed te kunnen begrijpen. Daarnaast ook met voldoende voorbeelden.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
3 oktober 2024
Aantal pagina's
35
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

16. Cluster analysis
Clustering: grouping data points based on similarity
Data points within a cluster are similar to each other, and dissimilar do data points in other clusters
→ useful to find groups that are assumed to exist in reality (e.g. vegetation type, animal behaviour)

Clustering = partitioning (same term)

- Clustering is not about revealing gradients
→ ordination is about revealing gradients
→ clustering is about detecting discrete groups with small differences between members
- Clustering is not the same as classification
→ classification is about creating groups based on known labels
Similarity and dissimilarity are essential components of clustering analysis
Distance between pairs of:
→ points
→ cluster of points

Types of clustering:

- Flat clustering (K-means clustering): creates a flat set of clusters without any structure
- Hierarchical clustering: creates a hierarchy of clusters (thus within internal structure)
Flat clustering (K-means)
K-means: the simplest clustering algorithm, where we must define a target number K, which refers to
the number of means (centers) we want our dataset to partition around.
→ Each observation is assigned to the cluster with the nearest mean
→ Only deals with difference between clusters and not within clusters

Steps:

1. Randomly locates initial cluster centers
2. Assign records to nearest cluster mean
3. Compute new cluster means
4. Repeats 2 & 3 a few iterations
→ new data points can be assigned to the cluster
with the nearest center
→ disadvantage: number of clusters is assigned by
eye



Learning algorithm: algorithm that learns; tries a
few times and then knows a definite outcome.
→ does not necessarily result in exactly the same outcome when the analyses is repeated

,Hierarchical clustering
Hierarchical clustering does not require us to pre-
specify the number of clusters to be generated,
and results in a dendrogram

Dendrogram: tree-like diagram that records the
sequences of merges or splits




Root node: upper node where all samples belong to
Leaf (terminal node): cluster with only one sample

→ similarity of two observations is bases on the height where branches containing those two
observations first are fused
→ we cannot use the proximity of two observations along the horizontal axis for similarity

Types of hierarchical clustering:

- Agglomerative clustering (merges): builds nested clusters by merging smaller cluster with a
bottom-up approach
- Divisive clustering (splits): builds nested cluster by merging smaller clusters with a top-down
approach




Disadvantage: when a new datapoint is
added, the entire dendrogram needs to
be recalculated

,Similarity and dissimilarity
Distance between pairs
Euclidean How the crow flies




Manhattan How the taxi drives
→ distance along the axis




Jaccard Intersection/union: relative similarity
→ for binary data




Jaccard distance:




0.67 → 4 out of 6 species differ between the sites

, If variables differ in measure (e.g. temperature and weight), scale the columns to mean = 0, sd = 1
→ same scal



Linkage: how we quantify the dissimilarity between clusters:

- Single: minimum distance between clusters
- Often leading to clusters with different size
- Shape of clusters can become elongated
- Complete: maximum distance between clusters
- Size of clusters become more compact
- Average: average between clusters - Handles outliers and noise well
- Ward: minimum variance method - Lead to more uniformly sized clusters
- More difficult to compute, thus slower for
large datasets

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
3 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
niekvandeven Wageningen University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
12
Lid sinds
2 jaar
Aantal volgers
1
Documenten
14
Laatst verkocht
1 week geleden
N van de Ven

MSc student Forest and Nature conservation aan Wageningen University. Tijdens mijn opleidingen maak ik altijd voor tentamens een gedetailleerde visuele samenvatting van de stof. Deze daarna in de kast laten verstoffen zou zonde zijn; graag help ik jou ook verder met deze samenvattingen!

4,5

6 beoordelingen

5
3
4
3
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen