100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Intro. To Research in Marketing Spring R Codes Assignments

Beoordeling
-
Verkocht
1
Pagina's
15
Geüpload op
23-09-2024
Geschreven in
2024/2025

This document includes all the necessary codes to pass the assignments for R for the course Introduction to Research in Marketing. Each week the assignments differ in different versions, however only small indicated changes need to be made in the coding in the first few steps to cover the different versions of the assignment or only a different number needs to be read from the output.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 september 2024
Aantal pagina's
15
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

R Codes for Introduction to Research in Marketing:
R Programming:
Week 1:
# Import boxoffice data:
install.packages(c("data.table","readxl"))
library(data.table)
library(readxl)
setwd("/Users/rafaelhoutepen/Downloads/IRM")
boxofficemojo_com <- read_excel("boxofficemojo.com.xlsx")
setDT(boxofficemojo_com)
View(boxofficemojo_com)
summary(boxofficemojo_com)

# Import the imdb data:
install.packages("readr")
library(readr)
imdb_com <- read_csv("imdb.com.csv")
setDT(imdb_com)
View(imdb_com)
summary(imdb_com)
imdb_com[, budget_num := as.numeric(imdb.com_budget)]

# Merge the two data sets:
movies <- merge(boxofficemojo_com,imdb_com, by.x =
c("boxofficemojo.com_imdb.com_id"), by.y = c("imdb.com_id"), all.x = TRUE)
View(movies)

# Save the workspace and the newly created data set:
save.image("Data.RData")
write_csv(movies, "movies.csv")
install.packages("writexl")
library(writexl)
write_xlsx(movies, "movies.xlsx")

# Visualization:
boxplot(movies$boxofficemojo.com_openinggross)
table(movies$boxofficemojo.com_MPAArating)
barplot(table(movies$boxofficemojo.com_MPAArating))
barplot(table(movies$boxofficemojo.com_MPAArating)/
sum(table(movies$boxofficemojo.com_MPAArating))*100)
install.packages("ggplot2")
library(ggplot2)
ggplot(movies, aes(boxofficemojo.com_MPAArating)) + geom_bar()
ggplot(movies, aes(boxofficemojo.com_MPAArating)) + geom_bar(aes(y =
after_stat(count)/sum(after_stat(count))*100)) + ylab("percentage")

# Bivariate visualization:

, movies[, boxofficemojo.com_MPAArating_R := ifelse(boxofficemojo.com_MPAArating == 'R',
1, 0)]
movies[is.na(boxofficemojo.com_MPAArating_R), boxofficemojo.com_MPAArating_R := 0]
ggplot(movies, aes(x=as.factor(boxofficemojo.com_MPAArating_R),
y=boxofficemojo.com_openinggross)) + geom_boxplot()
ggplot(movies, aes(x=as.factor(imdb.com_basedonbook),
y=boxofficemojo.com_openinggross)) + geom_boxplot()
ggplot(movies[!is.na(imdb.com_basedonbook),], aes(x=as.factor(imdb.com_basedonbook),
y=boxofficemojo.com_openinggross)) + geom_boxplot()
ggplot(movies, aes(x=budget_num, y=boxofficemojo.com_openinggross)) + geom_point()

# Aggregate and then plot:
temp <- movies[, .(boxofficemojo.com_openinggross_mean =
mean(boxofficemojo.com_openinggross)), by=c("imdb.com_year")]
temp <- movies[, .(boxofficemojo.com_openinggross_mean =
mean(boxofficemojo.com_openinggross, na.rm=TRUE)), by=c("imdb.com_year")]
temp <- movies[!is.na(imdb.com_year), .(boxofficemojo.com_openinggross_mean =
mean(boxofficemojo.com_openinggross, na.rm=TRUE)), by=c("imdb.com_year")]
setorderv(temp, c("imdb.com_year"))
ggplot(temp, aes(x=imdb.com_year, y=boxofficemojo.com_openinggross_mean)) +
geom_line()

# Hypothesis testing:
movies[!is.na(imdb.com_basedonbook), .(boxofficemojo.com_openinggross_mean =
mean(boxofficemojo.com_openinggross, na.rm=TRUE)), by=c("imdb.com_basedonbook")]
install.packages("car")
library(car)
leveneTest(boxofficemojo.com_openinggross ~ as.factor(imdb.com_basedonbook), movies,
center=mean)
t.test(boxofficemojo.com_openinggross ~ imdb.com_basedonbook, movies,
var.equal=TRUE)

# Question 1:
subset(movies, boxofficemojo.com_openingtheaters >= 500)
wide_release_movies <- movies[boxofficemojo.com_openingtheaters >= 500]
View(wide_release_movies)

# Question 2:
# Remove NAs from 'imdb.com_genres' column in 'wide_release_movies'
wide_release_movies$imdb.com_genres <-
na.omit(wide_release_movies$imdb.com_genres)

# Create a new dataset without NAs in 'imdb.com_genres'
wide_release_movies_no_na <- wide_release_movies[!
is.na(wide_release_movies$imdb.com_genres), ]

library(dplyr)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
RafaelHoutepen Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
188
Lid sinds
6 jaar
Aantal volgers
60
Documenten
45
Laatst verkocht
2 dagen geleden
Rafael's University Store!

I am a Dutch student at Tilburg University following the Msc Marketing Management and before that I completed the pre-master in Marketing Management as well as a Bachelor in Tourism Management. I would like to make other students happy by sharing my summaries and essays

4,0

22 beoordelingen

5
7
4
8
3
7
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen