100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Antwoorden

Solution Manual For PRML

Beoordeling
-
Verkocht
3
Pagina's
253
Geüpload op
29-10-2019
Geschreven in
2019/2020

This is a solution manual for pattern recognition and machine learning. It contains detailed solutions for the questions in the relevant book. Helpful for understanding and verifying the approach and correctness of solutions.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
29 oktober 2019
Aantal pagina's
253
Geschreven in
2019/2020
Type
Antwoorden
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

S OLUTION M ANUAL F OR
PATTERN R ECOGNITION AND M ACHINE
L EARNING

E DITED B Y

ZHENGQI GAO

the State Key Lab. of ASIC and System
School of Microelectronics
Fudan University
N OV.2017

, 1


0.1 Introduction

Problem 1.1 Solution

We let the derivative of error function E with respect to vector w equals
to 0, (i.e. ∂∂w
E
= 0), and this will be the solution of w = {w i } which minimizes
error function E . To solve this problem, we will calculate the derivative of E
with respect to every w i , and let them equal to 0 instead. Based on (1.1) and
(1.2) we can obtain :

=>
∂E ∑
N
= { y( xn , w) − t n } xni = 0
∂w i n=1
=>

N ∑
N
y( xn , w) xni = xni t n
n=1 n=1
=>
N ∑
∑ M
j ∑
N
( w j xn ) xni = xni t n
n=1 j =0 n=1

=>
N ∑
∑ M
( j+ i) ∑
N
w j xn = xni t n
n=1 j =0 n=1

=>

M ∑
N
( j+ i) ∑
N
xn wj = xni t n
j =0 n=1 n=1
∑N i+ j ∑N
If we denote A i j = n=1 xn and T i = n=1 xn i t n , the equation above can
be written exactly as (1.222), Therefore the problem is solved.

Problem 1.2 Solution

This problem is similar to Prob.1.1, and the only difference is the last
term on the right side of (1.4), the penalty term. So we will do the same thing
as in Prob.1.1 :

=>
∂E ∑
N
= { y( xn , w) − t n } xni + λw i = 0
∂w i n=1
=>

M ∑
N
( j+ i) ∑
N
xn w j + λw i = xni t n
j =0 n=1 n=1

=>

M ∑ N
( j+ i) ∑
N
{ xn + δ ji λ}w j = xni t n
j =0 n=1 n=1

, 2


where
{
0 j ̸= i
δ ji
1 j=i
Problem 1.3 Solution

This problem can be solved by Bayes’ theorem. The probability of selecting
an apple P (a) :
3 1 3
P ( a) = P ( a| r ) P ( r ) + P ( a| b ) P ( b ) + P ( a| g ) P ( g ) = × 0.2 + × 0.2 + × 0.6 = 0.34
10 2 10
Based on Bayes’ theorem, the probability of an selected orange coming
from the green box P ( g| o) :

P ( o| g ) P ( g )
P ( g | o) =
P ( o)
We calculate the probability of selecting an orange P ( o) first :
4 1 3
P ( o) = P ( o| r ) P ( r ) + P ( o| b ) P ( b ) + P ( o| g ) P ( g ) = × 0.2 + × 0.2 + × 0.6 = 0.36
10 2 10
Therefore we can get :
3
P ( o| g ) P ( g ) 10 × 0. 6
P ( g | o) = = = 0.5
P ( o) 0.36
Problem 1.4 Solution

This problem needs knowledge about calculus, especially about Chain
rule. We calculate the derivative of P y ( y) with respect to y, according to
(1.27) :


d p y ( y) d ( p x ( g( y))| g‘ ( y)|) d p x ( g( y)) ‘ d | g‘ ( y)|
= = | g ( y)| + p x ( g( y)) (∗)
dy dy dy dy

The first term in the above equation can be further simplified:

d p x ( g( y)) ‘ d p x ( g( y)) d g( y) ‘
| g ( y)| = | g ( y)| (∗∗)
dy d g ( y) dy
If x̂ is the maximum of density over x, we can obtain :

d p x ( x) ¯¯
=0
dx x̂
Therefore, when y = ŷ, s.t. x̂ = g( ŷ), the first term on the right side of (∗∗)
will be 0, leading the first term in (∗) equals to 0, however because of the
existence of the second term in (∗), the derivative may not equal to 0. But

, 3


when linear transformation is applied, the second term in (∗) will vanish,
(e.g. x = a y + b). A simple example can be shown by :

p x ( x) = 2 x, x ∈ [0, 1] => x̂ = 1
And given that:
x = sin( y)
Therefore, p y ( y) = 2 sin( y) | cos( y)|, y ∈ [0, π2 ], which can be simplified :
π π
p y ( y) = sin(2 y), y ∈ [0, ] => ŷ =
2 4
However, it is quite obvious :

x̂ ̸= sin( ŷ)

Problem 1.5 Solution

This problem takes advantage of the property of expectation:

var [ f ] = E[( f ( x) − E[ f ( x)])2 ]
= E[ f ( x)2 − 2 f ( x)E[ f ( x)] + E[ f ( x)]2 ]
= E[ f ( x)2 ] − 2E[ f ( x)]2 + E[ f ( x)]2
=> var [ f ] = E[ f ( x)2 ] − E[ f ( x)]2

Problem 1.6 Solution

Based on (1.41), we only need to prove when x and y is independent,
E x,y [ x y] = E[ x]E[ y]. Because x and y is independent, we have :

p( x, y) = p x ( x) p y ( y)

Therefore:
∫ ∫ ∫ ∫
x yp( x, y) dx d y = x yp x ( x) p y ( y) dx d y
∫ ∫
= ( xp x ( x) dx)( yp y ( y) d y)
=> E x,y [ x y] = E[ x]E[ y]

Problem 1.7 Solution

This problem should take advantage of Integration by substitution.
∫ +∞ ∫ +∞
2 1 1
I = exp(− 2 x2 − 2 y2 ) dx d y
−∞ −∞ 2σ 2σ
∫ 2π ∫ +∞
1 2
= exp(− 2 r ) r dr d θ
0 0 2σ
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
neobit

Maak kennis met de verkoper

Seller avatar
neobit Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
6 jaar
Aantal volgers
3
Documenten
1
Laatst verkocht
4 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen