100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Greenland et al. – Statistical tests, P values, confindence intervals, and power: a guide to misinterpretations

Beoordeling
-
Verkocht
-
Pagina's
4
Geüpload op
05-04-2019
Geschreven in
2018/2019

Article by Greenland et al. on statistical tests, p-values, CI and power









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
5 april 2019
Aantal pagina's
4
Geschreven in
2018/2019
Type
Samenvatting

Voorbeeld van de inhoud

Greenland et al. – Statistical tests, P values, confindence intervals, and power: a
guide to misinterpretations

Statistical significance is the classifying of results as “significant” or not based on a P value.
Some scientific journals now ban those statistical tests. In most scientific settings the
arbitrary classification of results into significant and non-significant is unnecessary for and
often damaging to valid interpretation of data; and that estimation of the size of effects and
the uncertainty surrounding our estimates will be far more important for scientific inference
and sound judgment than any such classification.

Statistical models, hypotheses and tests
Often the statistical models underpin the method. The model is a mathematical
representation of data variability, and ideally captures all sources of variability. But often
practical randomization is difficult.
Also, the scope of a model sound cover the observed data. But often decisions surrounding
analysis choices have been made after the data were collection.
The difficulty in understanding and assessing underlying assumptions is usually not
presented well enough or at all. Many assumptions thus go unremarked and unrecognized.
In most tests, we test null hypothesis (thus, there is no difference found). We may also test
hypothesis that the effect does or does not fall within a specific range, thus a one-sided or
dividing hypothesis. Too often we refer to null hypotheses test as “Null Hypothesis
Significance Testing”, whereas the hypothesis not always a null hypothesis.

Uncertainty, probability, and statistical significance
What was previously referred to as frequency probabilities (quantities that are hypothetical
frequencies of data patterns under an assumed statistical model) are now referred to as
probabilities. Thus frequency probabilities are misinterpreted as hypothesis probabilities.

The P value in this paper is approached as a statistical summary of the compatibility
between the observed data and what we would predict or expect to see if we knew the
entire statistical model (thus, all the assumptions used to compute the P value) were
correct.
In tests such as t-test and Chi-square, the P value is the probability that the chosen test
statistic would have been at least as large as its observed value if every model assumption
were correct. Nowadays, the P value only predicts the probability on e.g. the null
hypothesis.

A small P value does tell us something about how unusual the data would be if every single
assumption were correct; but it doesn’t tell us which assumption is incorrect. It may e.g. be
that P is small/large because study protocols were violated.

Also, mostly the significance/alpha level is 0.05. But is already fixed in advance and thus
part the study design, unchanged in light of the data. But P is a number computed from the
data and thus an analysis result, unknown until it is computed.

Moving from tests to estimates
Mostly P values are discussed only for the null hypothesis of no effect, which obscures the
close relationship between P values and confidence intervals, as well as the weaknesses
they share.
 Read part in actual article

What P values, confidence intervals, and power calculations don’t tell us

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lindawijnhoven Radboud Universiteit Nijmegen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
60
Lid sinds
8 jaar
Aantal volgers
54
Documenten
24
Laatst verkocht
1 jaar geleden

4,3

13 beoordelingen

5
9
4
1
3
2
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen