100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting: Data-Analyse

Beoordeling
-
Verkocht
4
Pagina's
26
Geüpload op
29-01-2024
Geschreven in
2023/2024

Dit is een samenvatting van het vak data-analyse. Het bestaat voornamelijk uit een samenvatting van de leerstof van de relevante hoofdstukken uit het boek. Dit is aangevuld met informatie uit de hoorcolleges en ~80% van de SPSS instructies die nodig zullen zijn.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 5, 19 t/m 24
Geüpload op
29 januari 2024
Aantal pagina's
26
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Chapter 5 – Pairs of Variables

5.1 : Scatter plot, covariance and correlation

Dependent variable (usually Y) = topic of investigation
Independent variable (usually X) = cause of variation

Scatterplot -> used to get a visual idea of the relationship between two (quantitative) variables by
displaying all the (x,y) pairs
Population/Sample cloud = all the dots resulting from the (x,y) pairs

Different possible relationships:
1. Positively linearly related -> best fitting straight line is increasing
2. Negatively linearly related -> best fitting straight line is decreasing
3. Quadratic relationship -> results seem to follow a mountain/valley based parabolic
4. Logarithmic relationship -> results variate wildly for low values but then seem to even out
5. No relationship

Covariance -> measures the degree of linear relationship between y and x
Formula:
N
1
Population covariance: σ X ,Y = ∑ (x −μ )( y −μ y )
N i =1 i x i
n
1
Sample covariance: s X ,Y = ∑ ( x −x )( y i− y )
n−1 i=1 i
-> the reason for ‘n-1’ instead of just ‘n’ in the sample covariance is that it is better at estimating the
population covariance
-> replacing all the y and Y by x and X will result in the formulas for the population variance and the
sample variance

Short cut formula:
N
1
Population covariance: σ X ,Y = ∑ x y −μ μ
N i =1 i i x y
1
Sample covariance: s X ,Y = ¿
n−1

Using the covariance has downsides. A reference point to determine whether the relationship is
strong is missing and the covariance is dependent on the dimensions of the variables

Correlation -> measures the degree of linear relationship between y and x but without the downsides
mentioned above
Formula:
σ X ,Y
Population correlation coefficient: ρ=ρ X , Y =
σ X σY
SX , Y
Sample correlation coefficient: r =r X , Y =
SX SY
-> value of both the coefficients is between (-1,1), where +1 indicates a strong positively linear

,relationship, -1 a strong negatively linear relationship and 0 no relationship (uncorrelated)

5.2 : Regression line

Regression of Y on X = the study of the dependence of Y on X
Least squares (LS) method :
1. Start with a general line with the equation: y = a + bx
2. Fill in the x and find out what values of a and b cause the least overall difference for the y values

Formulas:
S X, Y
Sample regression coefficients: b = 2 and a = y−b x
SX
S X, Y
Population regression coefficients: β 1= 2 and β 0=μ y −β 1 μ x
SX

Sample regression line: ^y =b0 +b1 x (also called: prediction line)
Population regression line: y=β 0 + β 1 x
-> b0/ꟗ0 = the intercept
-> b1/ꟗ1 = the slope
-> sample regression line passes through ( x , y )
-> population regression line passes through ( μ x , μ y )

Interpolation = if a new ‘x’ value is within the range of existing ‘x’ values, predictions can be trusted
Extrapolation = if a new ‘x’ value is outside the range of existing ‘x’ values, predictions can’t be
trusted

Residuals/Errors = the difference between the y-values and the regression line
-> shows the concentration of y-values around the regression line
-> the sum of residuals will always be 0 (otherwise the regression line is not the best fitting line)

Formulas:
Residual/Error: e i= y i− ^yi
n n
Sum of squared errors: SSE=∑ ( y i− ^y i ) =∑ e i
2 2

i=1 i=1
-> the smaller the SSE, the better the predicting performance of the regression line

5.3 : Linear transformations

Transforming a variable ‘X’ can be done using the formula: Y = a + bX
-> this has implications for certain statistics, summarised below:


Population dataset Sample dataset
Location μ y =a+b μ x y=a+b x
μ ymedian =a+b μ xmedian y median =a+ b x median
2 2 2 2 2 2
Variation σ Y =b σ X sY =b s X
σ Y =|b|σ X sY =|b|s X

, Transforming both variables ‘X’ and ‘Y’ can be using two formulas: V = a + bX and W = c + dY
-> this has implications for certain statistics, summarised below:


Population dataset Sample dataset
Covariance σ V ,W =bd σ X ,Y sV , W =bd s X ,Y
Correlation coefficient If bd >0 : ρV , W = ρX ,Y r V ,W =r X , Y
If bd <0 : ρV , W =− ρX , Y r V ,W =−r X , Y

5.4 : Relationship between two qualitative variables

Covariance and correlation coefficient are useless when comparing two qualitative variables
-> instead we use contingency/cross-classification tables, they give the joint frequencies of the data

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
joesvanderstok Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
132
Lid sinds
2 jaar
Aantal volgers
37
Documenten
32
Laatst verkocht
5 dagen geleden

4,0

9 beoordelingen

5
2
4
5
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen