100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Introduction to behavioral research methods

Beoordeling
5,0
(1)
Verkocht
7
Pagina's
34
Geüpload op
10-05-2018
Geschreven in
2017/2018

This extensive summary includes all compulsory chapters for the course experimental research (spring 2018). It includes chapters 3, 9, 10, 11, 12 & 13












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapters 3, 9, 10, 11, 12
Geüpload op
10 mei 2018
Aantal pagina's
34
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary Introduction to behavioral research methods


Chapters 3, 9, 10, 11, 12 & 13
Sixth edition
Mark R. Leary




1

,Chapter 3 The measurement of behavior
Types of measures

Measures can be divided into 3 categories:

1. Observational measures
2. Physiological measures
3. Self-reports

Observational measures
This are direct observations of behavior and can be used to measure anything a participant does that
researcher can observe.

Physiological measures
This type of measure is for researchers who are interested in the relationship between bodily
processes ad behavior. Internal processes that are not observable like heart rate, can be measured
with sophisticated equipment.

Self-report measures
This are the replies people give to questionnaires and interviews.
Cognitive self-reports  measures what people think about something. Example: attitude
Affective self-reports  responses regarding how consumers feel.
Behavioral self-reports  participants reports of how they act. Example: how often do you read the
newspaper?

Psychometrics
A specialty which is devoted to the study of psychological measurement. They investigate the
properties of the measure used in behavioral research and work toward improving psychological
measurement.

Scales of measurement
The goal of measurement is to assign numbers to participants’ responses so that they can be
summarized and analyzed.

4 different scales of measurement

1. Nominal
The numbers that are assigned to participants’ behaviors are essentially labels. Example:
boys are 1 and girls are 2. They are rather descriptions than real numbers. They do not have
the properties of real numbers and it does make no sense to perform mathematical
operations on them.
2. Ordinal
Rank ordering of a set of behaviors or characteristics. They tell us the relative order of our
participants on a dimension but do not indicate the distance between participants on the
dimension.
3. Interval
Equal differences between numbers reflect equal difference between participants in the
characteristic being measured. Example: IQ test difference between 90 and 100 is equal to
the difference between 100 and 110. An interval scale does NOT have a true zero point that
indicates the absence of the quality being measured. Example: an IQ score of 0 does not



2

, mean that there is no intelligence. Other examples: temperature. The numbers cannot be
multiplied or divided.
4. Ratio
Ratio scale has a true zero point, those numbers can be added, subtracted, multiplied and
divided. Example: weight etc. Because ratio has a natural zero point, it makes sense to talk
about 100 pounds being twice as heavy as 50 pounds.

Scales of measurement are important for 2 reasons:

1. The measurement scales determines the amount of information provided bya measure
2. The kinds of statistical analyses that can be performed on the data.

Assessing the reliability of a measure

Reliability = the consistency or dependability of a measuring technique. How can be tell whether the
variability in the numbers produced by a measure does reflect the actual variability in the
characteristic or response we want to measure?

Measurement error
A participant’s score consists of two components:

- True score
- Measurement error

Observed core = true score + measurement error.

True score = the score that the participant would have obtained if our measure were perfect and we
were able to measure whatever we are measuring without error.

Measurement error= the result of factors that distort the observed score so that it isn’t precisely
what it should be.

5 categories that can contribute to measurement error:

1. Transient state: Example: mood, health, feelings of anxiety.
2. Stable attributes: example: suspicious participants, less intelligent participants etc. Individual
differences in motivation can affect test scores.
3. Situational factors: example: room temperature, friendly researcher.
4. Characteristics of the measure: example: ambiguous questions, measures that induce fatigue
or fear.
5. Mistakes in recording responses. Example: lose count, typo etc.

The reliability of a measure if an inverse function of measurement error: the more measurement
present in a measuring technique, the less reliable the measure is. Anything that increases
measurement error, decreases the consistency and dependability of the measure

Relationship between measurement error & reliability.

Imagine you want to measure a variable on 5 participants. We want our measure to perfectly capture
the participants’ standing on this variable as shown by their true scores at the left side of the figure.




3

, Reliability as systematic variance

Assessing a measure’s reliability involves an analysis of the variability in a set of scores. If we combine
scores of many participants and calculate the variance, the total variance of the set of scores is
composed of the same two components:

Total variance in a set of scores = variance due to true scores + variance due to measurement error.

The variance that is associated with participants’ true scores is systematic variance.
Reason: the true score component is related in a systematic fashion to the actual attribute that is
measured.
The variance due to measurement error is error variance.
Reason: this variance is not related to the attribute being measured.

Reliability= true score variance / total variance

0  no reliability  none of the total variance is true score variance  everything is measurement
error  totally worthless
1 perfect reliability




4

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
6 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
annakosters Avans Hogeschool
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
36
Lid sinds
11 jaar
Aantal volgers
33
Documenten
6
Laatst verkocht
2 jaar geleden

4,0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen