100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Difference- & Differential Equations for EOR (RUG)

Beoordeling
-
Verkocht
-
Pagina's
45
Geüpload op
14-01-2024
Geschreven in
2023/2024

Summary for the course Difference- & Differential Equation for the bachelor programme Econometrics & Operations Research containing all important concepts discussed in the lectures. Lecture slides made by A. van der Made. 2nd year course taught by D. Vullings.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
14 januari 2024
Aantal pagina's
45
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Difference- & Differential Equations
Summary
EBB812A05
Semester I B


Wouter Voskuilen
S4916344


Contents
1 Week 1 2
1.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Week 2 10
2.1 Lecture 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Lecture 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Week 3 18
3.1 Lecture 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Lecture 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Week 4 25
4.1 Lecture 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Lecture 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Week 5 31
5.1 Lecture 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Lecture 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Week 6 40
6.1 Lecture 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Lecture 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Week 7 44
7.1 Lecture 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44




1

,Wouter Voskuilen Difference- & Differential Equations


1 Week 1
1.1 Lecture 1
A first order differential equation (first order ODE) is an equation of the form
F (t, x(t), x′ (t)) = 0, t∈T, (1)
where F is a function of (at most) 3 variables and T ⊆ R is connected.

NB: we confine attention to the ODEs that can be written as a recurrence relation:
x′ (t) = H(t, x(t)), t∈T,
for some function H.

Some important concepts:
− Ordinary: the function x is only differentiated with respect to one variable. This
variable is often time and denoted t.
− A first-order ODE that does not depend on t explicitly, i.e. that can be written as
F (x(t), x′ (t)) = 0, is called autonomous.
− If (y, z) 7→ F (t, y, z) is affine for all t ∈ T , then (1) is linear.
− A solution of the ODE (1) is a differentiable function x : T → C that satisfies (1).
− The general solution of (1) is the set containing all solutions of (1). So, an element of
the general solution is a function.
− An ODE like (1) together with an initial condition x(t0 ) = x0 is called an initial value
problem. A solution of the ODE that also satisfies the initial condition is a solution of
the initial value problem.
Let f and g be continuous functions. Four types of first order ODEs for which a general
method can be used to find solutions are:
1) x′ (t) = g(t) (type I ODE)
2) x′ (t) = f (t)g(x(t)) (seperable ODE)
3) x′ (t) = f (t)x(t) (homogeneous linear ODE)
4) x′ (t) = f (t)x(t) + g(t), g ̸≡ 0 (inhomogenous linear ODE)
NB: The symbol ≡ is used for constant functions, i.e. functions that attain only one value
over their entire domain.




2

,Wouter Voskuilen Difference- & Differential Equations


Solutions of Type I ODEs
Consider an ODE of the following form:
x′ (t) = g(t), t∈T.
Solutions of this type can be found by integrating both sides:
Z t Z t Z t

x(t) − x(t0 ) = x (s)ds = g(s) ⇒ x(t) = g(s)ds + x(t0 ).
t0 t0 t0

So, the general solution of a type I equation reads
Z t
x(t) = g(s)ds + c, t ∈ T , c ∈ C.
t0


Solutions of Seperable ODEs
Consider an ODE of the following form:
x′ (t) = f (t)g(x(t)), t∈T.
Suppose g(x) ̸= 0 for all x. The ODE can then be written as follows:
x′ (t)
= f (t), t∈T.
g(x(t))
Suppose we can find a primitive P of 1/g and a primitive F of f . Then by the Chain Rule:
Z t ′ Z t
x (t)
ds = P (x(t)) − P (x(t0 )) = f (s)ds = F (t) − F (t0 ).
t0 g(x(t)) t0

yielding the implicit general solution
P (x(t)) = F (t) + c, t∈T, c ∈ C.

Solutions of Homogeneous Linear ODEs
Consider an ODE of the following form:
x′ (t) = f (t)x(t), t∈T
Because this ODE is a special case of a seperable equation (with g : x 7→ x), we can again
apply the method of seperation of variables:
Z t ′ Z t
x (s)
ds = f (s)ds ⇒ log|x(t)| = F (t) + c, c ∈ R,
t0 x(s) t0

where F is a primitive of f .
So, |x(t)| = eF (t)+c and the general solution is consequently
x(t) = DeF (t) , t∈T, D ∈ R.

3

, Wouter Voskuilen Difference- & Differential Equations


The General Solution of Inhomogeneous Linear ODEs
Consider an ODE of the form

x′ (t) = f (t)x(t) + g(t), t∈T, (2)

with g ̸≡ 0.

To find solutions of this ODE we use the following result:

Theorem:
Let x∗ be a particular solution of (2). Then every solution of (2) can be written as the
sum of x∗ and a solution of the homogeneous equation x′ (t) = f (t)x(t). Conversely, any
function that can be written as the sum of x∗ and a solution of x′ (t) = f (t)x(t) is a solution
of (2). The proof is as follows:

• Suppose x1 is a solution of (2). Then:

(x1 − x∗ )′ = x′1 − x∗′ = (f x1 + g) − (f x∗ + g) = f (x1 − x∗ ).

So, x1 − x∗ is a solution of the homogeneous equation x′ = f x. The first claim now
follows by noting that x1 = x∗ + (x1 − x∗ ).

• Let y be a solution of the homogeneous equation x′ = f x. Then:

(x∗ + y)′ = x∗′ + y ′ = (f x∗ + g) + f y = f (x∗ + y) + g.

We conclude that x∗ + y is a solution of (2).

Example
Consider the following ODE:
2 +t
x′ (t) = 2tx(t) + et , t ∈ R.

We first determine the general solution of x′ (t) = 2tx(t):

x′ (t) 2
= 2t ⇒ log|x(t)| = t2 + c̃, c̃ ∈ R ⇒ x(t) = cet , c ∈ R.
x(t)
2 +t
Next, we ”figure out” that x∗ (t) = et is a particular solution of the inhomogeneous ODE.
So, the general solution reads:
2 2 +t
x(t) = cet + et , t ∈ R, c ∈ R.




4
€11,94
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
woutervoskuilen

Maak kennis met de verkoper

Seller avatar
woutervoskuilen Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
2 jaar
Aantal volgers
2
Documenten
8
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen