100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary GZW3024 SPSS en Gpower practicals

Beoordeling
4,0
(5)
Verkocht
8
Pagina's
9
Geüpload op
28-03-2018
Geschreven in
2017/2018

Een uitwerking van alle informatie die bij de SPSS en Gpower practicals is gegeven. Het geeft een overzicht van wat je in welke situatie met SPSS/Gpower moet doen om de gewenste uitkomst te krijgen. Daarnaast staat er ook informatie in die je bij de cases van GZW3024 kan gebruiken.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
28 maart 2018
Aantal pagina's
9
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

GWZ3024: SPSS practicals
SPSS practical 1
Create interactions terms: transform  compute variable.
- Interactieterm tussen gender en smoke = gender*smoke.

Perform a regression analysis according to the top-down procedure:
- You start with a model containing all relevant independent/predictor variables,
including the interactions: analyse  regression  linear.
o Put the Y variable below ‘dependent’ and the X-variables below
‘independent(s)’.
- You then check the results in the table ‘coefficients’: remove the variable with the
smallest absolute t-value (t) and a p-value (Sig.) larger then 0,05 from the model.
Then repeat the regression analysis without the variable.
o First test the interactions.
o De variabele waar je onderzoek naar doet blijft altijd in het model, ook al
is deze niet significant.
- Repeat this procedure until all remaining X-variables have a p-value at or below
5%.

Create dummy variables: transform  compute variable.
- Bijvoorbeeld D_EXP1 krijgt de codering instruction_method = 1, en D_EXP2 krijgt de
codering instruction_method = 2. D_EXP1 en D_EXP2 zijn de dummy variabelen.




Compare two regression models through an F-change test, to test the interaction:
analyse  regression  linear.
- Model 1 only contains main effects, model 2 also contain the interaction terms.
o These effects and interaction terms are places below ‘independent(s)’.
- Press ‘statistics’ and select ‘R squared change’. This is required to obtain the F-
change test.
- Check in the table ‘model summary’ the F-change value (F Change) and it’s p-
value (Sig. F change) in model 2. Check whether they are significant.

Case 1A
Create variables: transform  compute variable
- BMI = weight/(length**2).
- Overweigh = bmi > 25.

Inspect whether variabele increases of decreases across time: analyse  descriptive
statistics  descriptives.
- Below ‘variable(s)’ you enter the variable at different points of time. E.g.
‘bmi1998’, ‘bmi2008’, and ‘bmi2012’.

Change across time in the degree to which employees perform sports: analyse 
descriptive statistics  frequencies.
- Below ‘variable(s)’ you enter the variable at different points of time.
1

, Analyse whether there is a relation between two X’s and a continues Y: analyse 
regression  linear.
- Y = dependent, X’s = independent.

Some issues that could occur in the analysis:
- If it’s an observational study, confounders for the variable of central interest play
a role. You have to think about possible confounders and correct for them.
- Remember also that including categorical (i.e. nominal and ordinal) variables
with more than 2 levels as covariates into the regression analysis, has to be done
by first creating dummy variables. Testing for the significance of categorical
variables then has to be done using an F-change test.
- A good strategy is to start with the most complete model, and then perform a top-
down strategy for testing. The variable of central interest must always remain in
the model (even when it’s not significant).

SPSS practical 2
Crosstabulation; for instance, for calculating the incidence of becoming overweight in
2012 or having a normal weight again in 2012, taking 2008 as a departure year: analyse
 descriptive statistics  crosstabs.
- Row = overweight 2008, column = overweight 2012.
- Press ‘cells’ and select ‘row’ (incidences) below ‘percentages’; to specify that row
conditional percentages are calculated.

To describe the crude longitudinal association between a determinant and an outcome
that both are binary, also cross-tabulation can be used: analyse  descriptive statistics
 crosstabs.
- Association between sport and overweight’; row = sport2008, column =
overweight2012.
- Select ‘statistics’ and select ‘risk’; to obtain the OR (with a 95% confidence
interval) of being overweight of the sporting versus the non-sporting group.

Control for confounding variables can be done by performing a logistic regression
analysis. A method for selecting covariates is the top-down procedure: analyse 
regression  binary logistic.
- This is an automatic procedure and it can only be used when there are no
interactions in the analysis model!
- Block 1: Y = dependent, X = covariate/independent (first, only enter the variable
of central interest).
- Block 2: enter all remaining covariates that you consider relevant under
‘covariates’. The variables in block 2 will be removed by SPSS if they are not
significant (the variable from block 1 will always remain in the model).
o This occurs stepwise and is established by changing Method into:
Backward LR (instead of ‘Enter’).
- Categorical independent variables that involve more than two categories should
be defined as Categorical: press ‘categorical’ and select categorical covariates.
This implies that SPSS will automatically create 2 dummy variables for this
variable, where the highest value corresponds to the reference category.
- Check the results in the table ‘Variables in the equation’. In this model the
variable of central interest will be included and all covariates whose p-value ≤

2
€4,49
Krijg toegang tot het volledige document:
Gekocht door 8 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 5 reviews worden weergegeven
3 jaar geleden

5 jaar geleden

6 jaar geleden

6 jaar geleden

6 jaar geleden

4,0

5 beoordelingen

5
1
4
3
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
k_vdh Maastricht University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
578
Lid sinds
10 jaar
Aantal volgers
305
Documenten
10
Laatst verkocht
1 jaar geleden

3,6

108 beoordelingen

5
14
4
46
3
40
2
2
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen