100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary - Marketing Strategy Research (BM05MM)

Beoordeling
-
Verkocht
5
Pagina's
32
Geüpload op
15-12-2023
Geschreven in
2023/2024

Summary of all the lectures of this course, including case materials.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
15 december 2023
Aantal pagina's
32
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Lecture 1: introduction
Data analytics for marketing
Data  Tools  Strategy

Know:
- when to use what tool?
- how to use a tool?
- what information is needed?
- what decision to be made?
- limitations / strengths?

Lecture Tool Decision
2 Linear regression Market responses (eg
pricing)
3 Conjoint analysis New product design
4 Bass model New product diffusion
5 Cluster analysis Segmentation
6 Multi-dimensional scaling Positioning
These tools are specifically designed for marketing strategies.

Principles of data-driven marketing
Generic and applicable to almost all data-driven marketing situations.
P1: Any statistical analysis is to reduce/minimize information loss.
P2: Causation cannot be learnt directly from data.
P3: Prediction does not care about statistical significance
P4: Practical usefulness triumphs statistical criteria.

,Lecture 2: Market Response Models
Assumptions of a model guarantee the validity of a model.

Data  prediction model  prediction.
Goal: to find a functional relationship between input (IV) & output (DV), can have
many forms.

Linear regression: y = a + bx.
a = intercept
b = slope (if x moves 1 unit, y moves 1 unit).
b: the expected changes in Y, given a 1 unit increase
in X. This is not completely correct because it is not
causation.

Example: using price to predict sales. You can create
a scatterplot to check for the correlations.
Objective: to fit the relationship into a line.
Price = IV = input
Sales = DV = output.

What is a good prediction?
Principle: any statistical analysis is to reduce information loss.
 choose a line to minimize the differences.
Residuals = differences = e = ∆ 𝑦 = 𝑦 – 𝑦^
Y^ = predicted y.
Choose a & b.
1. Square ∆y
2. Sum up over all points

5-step framework for linear regression
1. Examine the data
Check for multicollinearity.
Multicollinearity = highly correlated IVs, multiple variables containing the same
information.
This leads to: biased & misleading coefficients. Also: information redundancy.
We want IVs that are not highly correlated. If VIF < 10, the IVs are not highly
correlated.
If VIF > 10, we have a collinearity issue (e.g. age and income).
 use either one variable in regression;
 transform the correlated variables into a mutually independent set of
predictors (e.g. factor analysis);
 collect more data.

2. Formulating the model
Decide which variables to use as input and translate this into a formula.
y = b0 + b1*X1 + … + bk*Xk + e.
Sales = β0 + β1 Advertising + β2 Promotion + β3 Price + β4 BrandEquity + e
In R: DV ~ IVs. Regression of the DV on IVs.
E.g.: regression of Sales on Advertising, Promotion, Price, and Brand Equity.

,3. Estimating the model
Translate the equation into a R formula:
model_with_brand <- lm(Sales ~ Advertising + Promotion + Price +
Brand_Equity, data = train)
summary(model_with_brand)

Any statistical analysis is to reduce/minimize information loss.
Choose coefficients in such a way that the difference (= residuals) between
actual Y and predicted Y is minimized.
OLS  Least square criterion: minimize the residual sum of squares (RSS).

4. Validating the model
Naïve prediction: no model involved, only based on distribution (only intercepts,
no other IVs). In a normal distribution, the median = mean.
E.g., What is the height of a Dutch female?

The question is: is the model better than a naïve prediction?  test the overall
model significance.

Overall model significance
H0: b1 = b2 = (…) = bk = 0.
We compare the model we run to a null model with no IVs.
We test the null hypothesis that the coefficients (βs) of all IVs are zero, the model
than has no predictive value. Check F-stat and P-value.
If P>0.05  H0 is true  the IVs do not impact the prediction (DV). The
coefficients are equal to 0.
If P<0.05  we can reject H0  the model is of predictive value.
For this model, the F-stat is 322.1, with a p-value < 2.2e-16 < 0.05.

Model fit / Strength of association / How good is the model?
R2
We tested that the model is significant, next question: how good is the model for
prediction?  test model fit (R2) to validate the current model.
How well does the model fit the data?
R2 = the % of variation in the DV explained by the IV (by the model).
The higher the R2, the better the prediction. Value between 0 and 1.
R2 = the explained variation (SSreg) / total variation (SSy). So, the percentage of
variation that is explained.

, Here: R2 = 0.9485  94.85% of the variation in the sales is captured by the
model.
There is no clear cut-off value for R2, you must consider the setting. In sales
prediction, a big R2 is expected (e.g., 90%), because retailers are often faced
with a relatively stable environment where consumers show persistent habits of
buying products.




Adjusted R2
Adjusted R2 penalizes the number of IVs. Useful to compare models with different
number of IVs. Adjusted R2 is used for model comparison.

Significance of coefficients
To test for the significance of individual coefficients, we test the following
hypothesis for a particular IV:
H0: βk = 0.
 Check the p-value < 0.05.
Parameter significance test using t-test.
E.g.; for IV Brand Equity: β=1.46, SE: 0.06, P <2.2e-16 < 0.05.
 we reject H0 and we conclude that Brand Equity is of predictive value.
€6,00
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
margot0408

Maak kennis met de verkoper

Seller avatar
margot0408 Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
7
Lid sinds
2 jaar
Aantal volgers
3
Documenten
2
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen