100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary MT - regression analysis

Beoordeling
-
Verkocht
1
Pagina's
15
Geüpload op
19-01-2018
Geschreven in
2017/2018

MT - regression analysis, summary.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 januari 2018
Aantal pagina's
15
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary Methods
Hair, J.F. Jr., Anderson, R.E., Tatham, R.L. (1987) Multivariate Data
Analysis, second edition, pp. 20- 40.

Multiple regression analysis is a statistical technique that can be used to analyse the relationship
between a single dependent (criterion) variable and several independent (predictor) variables.
The objective of multiple regression analysis is to use the several independent variables whose values
are known to predict the single dependent value the researcher wishes to know.

However, under certain circumstances, it is possible to use dummy-coded independent variables in
the analysis.

Four different purposes for which multiple regression analysis can be used:
1. Determine the appropriateness of using the regression procedure with the problem.
2. Examine the statistical significance of the attempted prediction.
3. Examine the strength of the association between the single dependent variable and the one or
more independent variables.
4. Predict the values of one variable from the values of others.

Simple regression = when the problem involves a single dependent variable that is predicted by a
single independent variable.
Multiple regression = when the problem involves a single dependent variable predicted by two or
more independent variables.

Prediction using a single measure – The Average
Errors.

By simply adding the errors, we might expect to obtain a measure of the prediction accuracy.
However, we would not – the errors would always sum to zero. To overcome this problem, we can
square (= kwadraat) each error and then add the results together to obtain the sum of squared
errors. The result, referred to as the sum of squared errors, provides a good measure of the
prediction accuracy of the arithmetic average. We wish to obtain the smallest possible sum of
squared errors, since this would mean that our prediction would be more accurate.

Prediction using two measures – Simple Regression
Simple regression also the rule, minimizing the sum of the squared errors of prediction.

Predicted number of … = Average number of …
^Y = ^y

^Y = b1X1

^Y = b0 + b1X1
 b0 and b1 are regression coefficients.
 b0 = the constant

Major assumptions
We have shown how improvements in prediction are possible, but in doing so we had to make several
assumptions about the relationship between the variable to be predicted and the variables we
wanted to use for predicting.

, - Statistical relationship: we are assuming that our description of … is statistical, not functional.
Functional relationship = calculates an exact value.
Statistical relationship = estimates an average value.
- Equal variance of the criterion variables:
- Lack of correlation of errors: we do want to find that any errors we make in prediction are
uncorrelated with each other.

Fixed versus random predictors
Random predictor variable = the levels of the predictor are selected at random. Our interest is not
just in the levels examined but rather in the larger population of possible predictor levels from which
we selected a sample.
Most regression models based on survey data are random effects models.

Prediction using several measures: multiple regression analysis
- Independence: no correlation between predictor variables.
- Interaction: not a constant effect??
- correlation: perfect correlation between two predictor variables (perfect correlation = 1.0)
No predictor should be included that is more closely related to the best predictor than it is to
the dependent variable.



Four purposes of multiple regression analysis:
1. Determining the appropriateness of our predictive model.
2. Examining the statistical significance of our model.
3. Predicting with the model.
4. Examining the strength of association between the variables.

Determining the appropriateness of our predictive model
We should note that residuals are an artefact of the particular predictive model we are using; they
are not equivalent to the random error in the population. These residuals should reflect the
properties of the population random error if the model is appropriate. Analysis of residuals may be
used to examine the appropriateness of the predictive models in terms of:
1. The linearity of the phenomenon measured: by plotting the residuals or by partitioning the error.
2. The constant variance of the error terms
3. The independence of the error terms
4. The normality of the error term distribution
5. The addition of other variables

Examining the statistical significance of our model
- Test of coefficients:
Hypothesis 1: the intercept (constant term) value of … arose by sampling error, and the real
constant term appropriate to the population is zero. (We test whether the constant term
should be considered appropriate for our predictive model)
Hypothesis 2: the coefficient … indicated that an increase of one unit in … is associated with
an increase in the average of … by …
We can test whether this coefficient differs significantly from 0.
- Test of the variation explained (coefficient of determination)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
JoriekeMasselink Universiteit Twente
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
160
Lid sinds
8 jaar
Aantal volgers
134
Documenten
33
Laatst verkocht
1 jaar geleden

3,7

22 beoordelingen

5
6
4
9
3
4
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen