100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
College aantekeningen

Samenvatting hoorcolleges intermediate Microeconomics, Games and Behaviour

Beoordeling
-
Verkocht
3
Pagina's
78
Geüpload op
10-10-2023
Geschreven in
2022/2023

Deze samenvatting bevat alle hoorcollege slides + extra uitleg. Alles is op een duidelijke manier weergegeven en daardoor makkelijker te begrijpen.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 oktober 2023
Aantal pagina's
78
Geschreven in
2022/2023
Type
College aantekeningen
Docent(en)
Linda keijzer
Bevat
Alle colleges

Voorbeeld van de inhoud

Week 1: uncertainty and time
example: Covid-19, the war in Ukraine, the climate
change  All these things influence the decision of
people, firms etc.

 Incentives
 Trade-offs
 Interaction
 Information
 Time

1.1 Decisions involving uncertainty: Policy, investments, insurance, education (We don’t know what
will happen in the future, what the pay-offs will be.  life is full of uncertainty
- Uncertainty: likelihood of outcomes (unknown)
- Risk: likelihood of outcomes (known)

What are risky outcomes?:
- Risk describes any economic activity in which there are uncertain outcomes
- Associated with any uncertain outcome are probabilities
- Probabilities are numbers between zero and one that indicate the likelihood that a particular
outcome will occur,
- In the absence of a known probability, economic agents have to estimate: they can estimate
based on frequency or based on subjective probability.

Decision problem involving risk:
Option 1: Job with a certain income of Y = 20 000
Option 2: Job with
- probability 0.5 that Y = y1 = 30 000
- probability 0.5 that Y = y2 = 10 000

Nature (not really a person of a firm) sudo player? chooses
probability is of an uncertain outcome

How to compaere 1&2 by calculating the expected values:

The expected value of Y: E(Y) = Pr1 x y1 + Pr2 x y2
With E(Y) = expected value of Y
Y1, y2 = payoffs
Pr1, Pr2 = probabilities of y1 and y2, respectively

The expected value of income from the second job in our example:
E(Y) = 0.5(30 000) + 0.5(10 000) = $20 000

This answer is the same as the certain option, how do we evaluate this?
We have to calculate the utility of the expected value U[E(Y)]:
The utility of the expected value is the utility an individual
has from receiving a certain amount of money equivalent to
the expected value of an uncertain outcome

,In our example (Option (2)): We know that the expected outcome which is uncertain, is 20 000. If we
just plug this 20 000 into the utility fucntion as if it is certain outcome than we calculte the utility of
the expected value. This means that the utility of the expected value doesn’t take into account the
expected risk.
E(Y) = 0.5(30 000) + 0.5(10 000) = €20 000
The utility of the expected value U[E(Y)] = U(€20 000)
U[E(Y) doesn’t consider the involved risk)

Than we have the expected utility E(U(Y)):

The expected utility is the sum of utilities of all possible uncertain outcomes, weighted with their
probability, that any particular outcome will be realized.

E(U(Y)) = 0.5U(€20 000) + 0.5U(€10 000)
E(U(Y)) does consider the involved risk

Approach of expected utility theory

This is also called Von Neumann – Morgenstern Expected Utility Theory: what does this precisely
contain?

 Rational decision making with with risk/ uncertainty: a decision maker facing a decision
problem with a risky payoff (U(Y)) is rational if he chooses an action α that maximizes his
expected utility. That is α chosen if and only if
o E[U(Y)| α ] ≥ E[U(Y)| b ] for all b
Where:
o E[U(Y)| α ] = pa1U(y1) + pa2U(y2)

pa1 : probability of income Y1 if action α is chosen.
pa2 : probability of income Y2 if action α is chosen.

And E(U(Y)|b] equivalently.

Example (A gamble):
With a 60% chance, you will € 1000 and
with a 40% chance, you will win €2500
What is the expected value of this gamble?
E(Y) = 0.6 x 1000 + 0.4 x 2500 = €1600

The expected utility from the gamble is:
𝐸(𝑈(𝑌)) = 0.6 × 𝑈(€1000) + 0.4 × 𝑈(€2500)
Suppose a persons’ utility can be expressed as a function of money in the following way:
U(money) = √ money
Then the expected utility from the above gamble is: E(U(Y)) = 0.6 x √ 1000+ 0.4 x = √ 2500
E(U(Y)) = 0.6 x 31.62 + 0.4 x 50 ≈ 38.97
Utility of the Expected value of this gamble:
If instead this person were given the expected value of the gamble, €1600, for certain:
U(E(Y)) = = √ € 1600 = 40
In other words, the guaranteed amount of €1600 yields higher utility than the gamble that has an
expected value of €1600.

,Utility of expected value > expected utility
This shows that the individual does not like risk: (s)he is risk averse.
Risk attitudes:
The terms risk attitude, risk appetite, and risk tolerance are often used to describe an individual’s or
an organisation's attitude towards risk-taking. Usually three types:
- Risk averse:
o 𝑬(𝑼(𝒀)) < 𝑼[𝑬(𝒀)]
o Decision maker prefers the option with the certain income over the option with the
uncertain income, given the same expected value.
- Risk loving (seeking):
o 𝑬(𝑼)𝒀)) > 𝑼[𝑬(𝒀)]
o Decision maker prefers the option with the uncertain income over the option with
the certain income, given the same expected value.
- Risk neutral:
o 𝑬(𝑼(𝒀)) = 𝑼[𝑬(𝒀)]
o Decision maker is indifferent between the option with the certain income and the
option with the uncertain income, given the same expected value.

A risk averse person is willing to pay to avoid risk, but how much?

Risk averse person: E(U(Y)) < U[E(Y)] concave function

Risk loving person: convex function
Risk neutral: linear line




What is the certainty equivalent?
Certainty equivalent (CE):
The certainty equivalent is the certain payoff that
generates as much utility as the expected utility of
the gamble.

, ~
𝐶𝐸 → U( Y ) = E(U(Y))
It is determined by equating the utility function to the expected utility and solving for the
income (or wealth).
For our example gamble with utility function 𝑈(𝑌) =√ Y we calculated: 𝐸(𝑈(𝑌)) = 0.6 × 31.62 + 0.4 ×
50 ≈ 38.97 Hence:
~
U( Y ) = E(U(Y)) = 38.97
 √~ Y = 38.97
 ~ 2
Y = 38.97 = 1518.66 = CE

Risk premium: the risk premium is the maximum willingness to
pay to eliminate risk. It is determined as the difference between
the expected value and the certainty equivalent:
E(Y) – CE
𝐸(𝑌) − 𝐶𝐸 = €1600 − €1518.66 = €81.34
Be careful: Risk premium is not always a horizontal line, it depends on what is on the axis.
Measures of risk aversion:
A consumer with a von Neumann-Morgenstern utility function can be one of the following:
1. Risk averse, with a concave utility function.
2. Risk-neutral, with a linear utility function,
3. Risk-loving, with a convex utility function.
 The degree of risk-aversion a consumer displays is related to the curvature of their utility
function.
1. 2. 3.




Somehow, we have to find a way to
measure this curvature. This has be done by Arrow and Pratt. Arrow and Pratt define two measure of
risk aversion:

1. Arrow-Pratt measure of absolute risk aversion (ARA)
2. Arrow-Pratt measure of relative risk aversion (RRA)

ARA: How Absolute Risk-Aversion (amount of money, wealth of whatever at risk)
changes with wealth:




Percentage at risk


RRA: How Relative Risk-Aversion (percentage at risk) changes
= with wealth:
€7,98
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
bentevanderveldt

Maak kennis met de verkoper

Seller avatar
bentevanderveldt Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
4 jaar
Aantal volgers
2
Documenten
1
Laatst verkocht
4 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen