100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Introduction to Research in Marketing

Beoordeling
-
Verkocht
-
Pagina's
49
Geüpload op
09-10-2023
Geschreven in
2023/2024

Dit is een samenvatting van het vak introduction to research in marketing. De volgende 6 onderwerpen zijn samengevat: ANOVA, linear regression, factor analyse, cluster analyse, multiple regression en conjoint analyse.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 oktober 2023
Aantal pagina's
49
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Introduction to research in Marketing
Week 1
HBBA: Chapter 1

HBBA = Broadly speaking, it refers to all statistical methods that simultaneously analyze multiple
measurements on each individual or object under investigation.

Measurement scales:
- Nominal (non-metric) à Chi-square test
- Ordinal (non-metric) à Percentiles, median, rank correlation + all previous statistics
- Interval (metric) à Arithmetic average, range, standard deviation, product-moment
correlation + previous methods
- Ratio (metric) à Geometric average, coefficient of variation + all previous methods




If value of your ratio equals to zero (the zero is abstance), then isn’t there. For example, if the profit
is 0, there is no zero, and if the distance is 0, then there is no distance.

Reliability = refers to the degree in which multiple measurements
give the same result. Is the measure, consistent or correctly
reregistered?
- Low reliability = you are trying but, you are going in all
different directions.
- High reliability = for example, you can approach every shot
as one measurement.

Validity = refers to the degree to which the scores on a measure represent the variable they are
intended to. Does the measure capture the concept it is supposed to measure?

Statistical significance and power
Hypothesis testing:
H0: no difference H1: Difference
H0: No difference 1-a ß (Type II error)
H1: Difference a (type I error) 1 – ß (power)

Type I error (a) = probability of test showing statistical significance when it is not present (false
positive) (rejecting the null hypothesis when it’s true.

Type II error (ß) = Keeping the null hypothesis when the alternative is true.
Power (1 – ß) = Probability of test showing statistical significance when it is present.

,Power depends on:
- A larger p-value (+)
- Effect size (+)
- Sample size n (+)
Implications:
- Anticipate consequences of a, effect and n
- Assess/incorporate power when interpreting results.

If we are willing to settle for a higher alpha than it means our power will increase. When you willing
to set a higher alpha, you are saying that you are taking a higher risk.

Types of multivariate methods:
Dependence techniques:
- One or more variables can be identified as dependent variables and the remaining as
independent variables.
- Choice of dependence technique depends on the number of dependent variables involved in
analysis.
- Looking for a causal relationship.
Interdependence techniques:
- Whole set of interdependent relationships is examined.
- Further classified as having focus on variable or object.
- Not looking for a causal relationship but looks at the whole group of variables and try to find
structure/pattern in there.

Outliers = observations with a unique combination of characteristics identifiable as distinctly
different from the other observations. Unusual observations.
- Good: true value (probably)
- Bad: something is wrong?
o To distinguish these types, one should investigate the causes
§ Procedural error
§ Exceptional circumstances (cause known or unknown)
§ Regular levels, yet unique in combination with other variables (bivariate and
multivariate outliers)
Bad outliers completely mess up the results.

How can we detect outliers:
- Univariate (histograms, TS plots, Frequency Tables, Means +/- 3SD, box plots)
- Bivariate (scatterplot, multiple histograms)
- Multivariate (Mahala Nobis D2 – not part of the course)
Keep it or delete outlier? à judgement call
- Only observations that truly deviate can be considered outliers
- Removing many outliers can jeopardize representativeness

Examining missing data:
Missing data lead to:
- Reduced sample size
- Possibly biased outcome if missing data process not random à 4 step approach for
identification and remedying



Steps in missing data analysis:

,1. Determine type of missing data: ignorable ß à non-ignorable missing?
2. Determine extent (%) of missing data: by variable, case, overall
3. Diagnose randomness of missing data: systematic, missing at random (MAR), missing
completely at random (MCAR)?
a. Are non-ignorable missing:
i. Systematic = linked to level of variable itself, another pattern?
ii. Missing at random (MAR) = whether Y is missing depends on level of X. Yet,
within level of X: missing at random
iii. Missing completely at random (MCAR) = whether Y is missing is truly
‘random’ (independent of Y or of any other variable X)
4. Deal with the missing data problem: remove cases or variables with missing values, use
imputation

, Week 1 – ANOVA (Dependence method)
ANOVA is a dependent method because we are looking for causal relationship. Minimum variable is
on nominal scale. Outcome variable to be metric, input variables are non-metric.

1. Defining objectives
a. Test whether treatments (categorical variables) lead to different levels for a (set of)
metric outcome variable.
i. Does online ad design, in particular: position of picture and logo, affect the
click-through rate?
€5,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
birgit_brinks

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Bundle periode 1 - marketing management
-
3 2023
€ 18,97 Meer info

Maak kennis met de verkoper

Seller avatar
birgit_brinks Hogeschool Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
6 jaar
Aantal volgers
0
Documenten
3
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen