100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary The Adaptive Brain lectures

Beoordeling
-
Verkocht
-
Pagina's
26
Geüpload op
21-04-2023
Geschreven in
2021/2022

Summary of the lectures of The Adaptive Brain, which is a part of the minor Biomedical Sciences and Neuroscience: track Neuroscience.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 april 2023
Aantal pagina's
26
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

SMV HC THE ADAPTIVE BRAIN

Ch. 2 Electrical Signals of Nerve Cells

Neurons consist mainly of lipids, which are super good conductors and do not carry electrical
current. Electrical signaling is fundamental neuronal process that underlies all aspects of
brain functioning. However, as neurons are poor generators and conductors of electricity.
They have developed a mechanism to help overcome this limitation which is based upon the
flow of ions across the membrane.

Electrical signals that neurons convey can be measured with micro-electrodes:
- Receptor potentials in touch receptors in your skin. Membrane potential changes
because of flow of ions.
- Synaptic potential if you activate one single synapse
- Action potential when threshold potential is reached. This amplitude is way bigger
than the synaptic potential.

Experiment: culture individual nerve cells and build electrodes in the neurons. One electrode
to stimulate and the other one to record. Once you activate record electrode they measure a
-65 mV membrane potential, this is the unstimulated resting membrane potential. If you
activate the stimulation electrode there is an inject of negative current to -80 mV
(repolarization) first and then an inject of positive current (depolarization). If you increase the
current that you inject into neuron, they reach certain plateau (threshold) and an action
potential happens. The more current we inject, more action potentials occur (the frequency
increases, not amplitude). All or none event, once it reaches the threshold you get an action
potential.

Action potentials are very important. They allow for long range transport and encode
information of stimulus intensity in their frequency. The membrane potential depletes very
fast if you don’t get action potential because of the lipid bilayer (passive conduction). Action
potentials can carry on a long distance, they don’t deplete.

Neurons have -65 mV resting membrane potential. The plasma membrane is impermeable
to ions. Inside the cell a there is a lot of K, and outside a lot of Na and Cl. Movement of ions
is producing a negative membrane potential. Proteins in membranes that allow movement of
ions:
- ATPase (Na/K pump): active transporter, consumes a lot of energy. Pumps 2 K in
the cell and 3 Na out the cell against their gradient.
- Ion channels: selective for certain ions. Will only allow passage of one certain ion.
Can only open and close, ions move with the gradient. Opening and closure of
these channels is controlled by the membrane potential, the ion channels are
voltage gated channels. 2 most important are the K and Na channel. When
neuron is at rest Na channels are all closed. K channels are a little bit open; K is
leaking a bit to the outside of the cell.

So the K channels are a little bit leaky and K travels outside the cell. This will make the
membrane potential a bit negative, because of the positive ions that are flowing out of the

,cell. Electrical force wants K back inside the cell, membrane gets depolarized, no netto flux
of K. Now there is a membrane rest potential of -65 mV.

Nernst equation is the equation for equilibrium, the membrane potential. Goldman equation
also included membrane permeability. The rest membrane potential is close to the K
equilibrium. During action potentials Na channels start to open, membrane potential goes to
Na equilibrium, then Na channels are closing again, K are opening again and will go down to
K equilibrium (lower than rest membrane potentials).

, Ch 2-4. Action Potentials are Generated by Ion Currents

Electric current: flow of electrical charge (ampere=coulomb/second)
Membrane resistance: a measure of how much the membrane opposes the passage of
electrical charge
Membrane conductance: the permeability of the cell membrane to those ions
Voltage: difference in charge between two points. Creates energy that will ‘push’ charges to
move (potential energy). Voltage difference influences the current of ions.
Membrane potential: the voltage difference between the inner and outer surface of the cell
membrane
Capacitator: can store charges. Membranes are capacitators because the lipid bilayer is
impermeable to ions.

Ions can flow through specific channels. When channels open ions flow to reach
electrochemical equilibrium.

Experiment: test hypothesis that AP occurs due to increased permeability to Na. They
studied this with squid giant axons. Bigger diameter of axon, faster ions flow through axon,
very fast information conducting. They isolated these axons and measured the membrane
potential with a voltage clamp. Penetrate them with two electrons: recording electrode and
current-passing electrode. They saw that squid axons resting MP -70 mV. Force current into
electrode thereby changing the voltage of MP, jumped to +30 mV. Measure the current that
is required to change the membrane in such voltage.
- Put in negative current to -130 mV. They saw fast capacitive current go to -130
mV and after that nothing happened.
- Put in positive current to 0/+30, also saw capacitive current but something else
was triggered, transient inward current and slow outward current. This was an
action potential.

Which ions are involved?
1. Determine at what membrane potential current reverses. Compare to
electrochemical equilibrium potential of ions in solution.
2. Change external concentration of certain ions, to test if the currents are altered or
reversed.
3. Specifically inhibit certain channels to test if this blocks the currents. Tetrodotoxin
(TTX) used which blocks sodium channels, powerful neurotoxin.

When they removed sodium, outward current is still there but inward current is completely
gone. So the inward current is generated by the flow of sodium in the cell. Removed
potassium, outward current gone and inward current still there. When you block the sodium
channels neurons can’t generate action potentials.

Patch clamp is the refinement of the voltage clamp method. Put a micropipette on the
membrane of a neuron. In the pipette there will be some ion channels, on which you can
apply gentle suction. You suck in a little bit of membrane with ion channels. Now you
measure current flow that is flowing through those channels. You can change the voltage
and measure the current that is required to change the voltage. You can also patch the

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
rooseijgenraam Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
63
Lid sinds
2 jaar
Aantal volgers
27
Documenten
41
Laatst verkocht
1 maand geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen