100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Econometrics: Summary of All lectures. Grade: 8.8

Beoordeling
-
Verkocht
2
Pagina's
17
Geüpload op
21-03-2023
Geschreven in
2022/2023

Econometrics: Summary of all lectures (7 lectures). Includes all information on Cross-Sectional Data, Time Series Data and Panel Data.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 maart 2023
Aantal pagina's
17
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Econometrics



Summary of all Lectures
(7 Lectures)




Radboud University Nijmegen


Yoël Guijt

, Week 1 — Introduction

Econometrics = Theories, Models, Data + Statistics
Approach to Econometrics:
> Theory > Mathematical Model > Data > Estimation > Hypothesis testing > Predict > Policies

Econometrics:
> Statistics to estimate relationships, test theories, and evaluate policies
> Economic theory to real world, utility maximization, supply and demand, etc.
> Often in economics di cult to examine experiments; statistics (return to education, etc.)

Theory to Empirics:
> Observations of real world relations, to econometric models, absorbing of all unobserved e ects
> Then, hypothesis about relations, with data to test these hypotheses

Types of Data:
1 Cross-Sectional: One moment in time, multiple economics entities (individuals, rms, etc.)
2 Time Series: Over time, Single or a few economic entities
3 Panel Data: Two or more moments in time, Multiple economics entities (same over time)

Non-experimental vs experimental data:
> Non-experimental = Researcher is passive collector of data; observations
> Experimental = Collected in labor eld experiments

Causality and Ceteris Paribus:
> Di cult to establish a relation; often only an association or co-movement
> Regression Analysis aims at detecting causal factors ! (Di cult, only linear)
> Ceteris Paribus = All else being equal (if enough variables in model, ceteris paribus causal)

Why is data analysis important?
> Theories need data; to criticize existing practices; Support to theories, but never prove them;
Economics measurement can however reject economic theories; Understanding of econometrics
is important for economic practices

Basic Maths and Stats:
> Summation: x1+x2+x3 … + xn = SUM of x
> For constants c: n*c
> Linear Function: y = B0 + B1*x (B0 is intercept, B1 is slope coe cient) (DeltaY = B1 *Delta X)
> Average: 1/n * SUM… All summed up and divided by ’n’
> Deviation Average: (xi - x)… The di erence between a single observation and the average
> Proportions: (x1-x0)/x0 = DeltaX / X0 (Percentage? 100* DeltaX/X0 )

> Expected Value: E(X) or MU = x1F(x1) … This means, probability/weight, times value of x

> Variance: (X - MU)^2 = SIGMA^2
> Std. Deviation: Square Root of the Variance … SIGMA = sd(X) = Wortel Variance

> Covariance: Cov(x, y) = (Xi - X)(Yi - Y) … Relation between two random variables
> Correlation: Cov(x, y) / (SIGMAx * SIGMAy) … The covariance divided by st.dev. of x & y

> Conditional Expectation: E(Wage|Education) = 1.05 + 0.45Education (years of education)

The Simple Regression Model:
> Example: To what extent is the price of house determined by size? E ect of X on Y …

Deterministic Model: Speci es relation between variables exactly, without room for deviation
Probabilistic Model: Deterministic component + Random error, stochastic, or chance component
> Example: Y = 1.5X + E




ffi ffi fi fi ff ffi
ffi ff fi ff

, The Linear Model:
> Y = B0 + B1x + … + e Y = Dependent /// X = Independent
B0 + B1x = Deterministic part /// e = Stochastic part
B0 = intercept /// B1 = (In-)/decrease of Y for each unit of X
Y = Dependent Variable = Left-hand side, Explained, Regressand, Outcome Variable
X = Independent Variable = Right-hand side, Explanatory, Regressor, Covariate, Control Variable

Notation:
> Yi = B0 + B1xi + Ei (Cross sectional - Consumption of individuals at same time)

Multivariate Linear Models:
> Yi = B0 + B1 X1i + B2 X2i + B3 X3i … + Ei (n = 1,2,3, …, N)

Time Series:
> Yt = B0 + B1 Xt … + Et (t = 1,2,3, …, T)
>>> Has one entity and T di erent time periods

Estimation with Least Squares Method (LSM):
> Tries to minimize the deviations: Ordinary Least Squares Regression (OLS)
> There is only one line for which the “sum of squares” of the deviations is minimal !!

Theoretical versus Estimates Regression:
> Theoretical => Yi = B0 + B1 Xi + Ei
> Estimates => Yi = 103.40 + 6.38Xi

Deriving the Ordinary Least Squares Estimates (OLS):
> OLS is tting a line through the sample points, such that “sum of squared residuals” is minimal
> We can set up a formal minimization problem; choose parameters with minimize the following…

> The Residual, Êi, is an estimate of the error term, E, and is the
di erence between the tted line and the sample point


> This also leads to Y = B0 + B1 X




> This leads to Variance (xi - X)^2
> And Covariance (xi - X)(yi - Y)


The slope of B1 is now:

> In words —> The slope coe cient B1 is the “sample covariance”
> Between X and Y divided by the sample variance of X (one requirement, X has to vary)
> If X and Y are positively correlated, B1 will be positive (if not, it will be negative)

Algebraic Properties of Ordinary Least Squares (OLS):
> The Sum of the OLS residuals is ZERO —> SUM of Ei = 0
> The chosen estimates of B0 and B1 make the residuals add up to 0
> The sample covariance between the regressors and the OLS residuals is zero
> The OLS regression always goes trough the mean of the sample; Y^ = B0^ + B1^X^
> We can think of each observation as being made up of an explained and unexplained part

Regression Through The Origin:
> Regression without intercept term is possible, but leads to violation of Classical Assumption, it
is almost never zero
> Omitting the intercept leads the impact of intercept being forced into other coe cients (bias!)
> Don’t use it; Sum of Residuals is never Zero & No meaningful R2 can be computed





ff fi fi ffi ff ffi

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
yoel0507 Radboud Universiteit Nijmegen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
117
Lid sinds
2 jaar
Aantal volgers
70
Documenten
36
Laatst verkocht
2 weken geleden

3,8

8 beoordelingen

5
3
4
2
3
2
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen